zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solvability of a nonlinear fourth-order discrete problem at resonance. (English) Zbl 1193.39002

The authors consider the nonlinear discrete boundary value problem:

Δ 4 u(t-2)=λ 1 u(t0=f(t,u(t))+τϕ(t)+h ¯(t),tΠ 2 ,
u(1)=u(T+1)=Δ 2 u(0)=Δ 2 u(T)=0,

where T is an integer with T5; Π 2 ={2,3,,T}; λ 1 is the first eigenvalue of the associated linear eigenvalue problem; ϕ(0) is the corresponding eigenfunction; f:Π 2 × is continuous and |f(t,s)A|s| B α , tΠ 2 , s for some 0α<1 and A,B[0,+); h ¯:Π 2 with s=2 T h ¯(t)ϕ(t)=0. The existence of the solution of the above problem is shown.

39A12Discrete version of topics in analysis
[1]Gupta, C. P.: Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. anal. 26, No. 4, 289-304 (1988) · Zbl 0611.34015 · doi:10.1080/00036818808839715
[2]Gupta, C. P.: Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. math. Anal. appl. 135, No. 1, 208-225 (1988) · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[3]Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems, J. math. Anal. appl. 116, No. 2, 415-426 (1986) · Zbl 0634.34009 · doi:10.1016/S0022-247X(86)80006-3
[4]Yang, Yisong: Fourth-order two-point boundary value problems, Proc. am. Math. soc. 104, No. 1, 175-180 (1988) · Zbl 0671.34016 · doi:10.2307/2047481
[5]Del Pino, M. A.; Manásevich, R. F.: Multiple solutions for the p-Laplacian under global nonresonance, Proc. am. Math. soc. 112, No. 1, 131-138 (1991) · Zbl 0725.34021 · doi:10.2307/2048489
[6]Bai, Zhanbing; Wang, Haiyan: On positive solutions of some nonlinear fourth-order beam equations, J. math. Anal. appl. 270, No. 2, 357-368 (2002) · Zbl 1006.34023 · doi:10.1016/S0022-247X(02)00071-9
[7]Chai, Guoqing: Existence of positive solutions for fourth-order boundary value problem with variable parameters, Nonlinear anal. 26, 289-304 (2007)
[8]Ma, Ruyun; Wang, Haiyan: On the existence of positive solutions of fourth-order ordinary differential equations, Appl. anal. 59, No. 1-4, 225-231 (1995) · Zbl 0841.34019 · doi:10.1080/00036819508840401
[9]Zhang, Binggen; Kong, Lingju; Sun, Yijun; Deng, Xinghua: Existence of positive solutions for BVPs of fourth-order difference equations, Appl. math. Comput. 131, 583-591 (2002) · Zbl 1025.39006 · doi:10.1016/S0096-3003(01)00171-0
[10]He, Zhimin; Yu, Jianshe: On the existence of positive solutions of fourth-order difference equations, Appl. math. Comput. 161, 139-148 (2005) · Zbl 1068.39008 · doi:10.1016/j.amc.2003.12.016
[11]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[12]Costa, D. G.; Goncalves, J. V. A.: Existence and multiplicity results for a class of nonlinear elliptic boundary value problems at resonance, J. math. Anal. appl. 84, No. 2, 328-337 (1981) · Zbl 0479.35037 · doi:10.1016/0022-247X(81)90171-2
[13]Rodriguez, J.: Nonlinear discrete Sturm – Liouville problems, J. math. Anal. appl. 308, 380-391 (2005) · Zbl 1076.39016 · doi:10.1016/j.jmaa.2005.01.032
[14]Ma, Ruyun: Nonlinear discrete Sturm – Liouville problems at resonance, Nonlinear anal. 67, 3050-3057 (2007) · Zbl 1129.39006 · doi:10.1016/j.na.2006.09.058
[15]Kelley, W. G.; Peterson, A. C.: Difference equations. An introduction with applications, (2001) · Zbl 0970.39001
[16]Ruyun Ma, Unbounded perturbations of nonlinear second-order difference equations at resonance, Adv. Differ. Eq. (2007) 12pp. doi:10.1155/2007/96415 (Article ID 96415). · Zbl 1154.39010 · doi:10.1155/2007/96415