zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. (English) Zbl 1193.60057
Summary: This paper studies the convergence of the stochastic gradient identification algorithm of multi-input multi-output ARX-like systems (i.e., multivariable ARX-like systems) by using the stochastic martingale theory. This ARX-like model contains a characteristic polynomial and differs from the conventional multivariable ARX system. The results indicate that the parameter estimation errors converge to zero under the persistent excitation conditions. The simulation results validate the proposed convergence theorem.
MSC:
60G42Martingales with discrete parameter
62L20Stochastic approximation
93E10Estimation and detection in stochastic control
62F12Asymptotic properties of parametric estimators
References:
[1]Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012
[2]Liu, Y. J.; Xie, L.; Ding, F.: An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Journal of systems and control engineering 223, No. 4, 445-454 (2009)
[3]Ljung, L.: System identification: theory for the user, (1999)
[4]Qu, Q.; Jin, M. L.: Parameter estimation of a quadratic FM signal based on FRFT, ICIC express letters 3, No. 3A, 385-390 (2009)
[5]Lio, Y. L.; Tsai, T. R.; Chiang, Y. Y.: Parameter estimations for the burr type XII distribution under progressive type II censoring, ICIC express letters 3, No. 4B, 1459-1464 (2009)
[6]Aihara, S. I.; Bagchi, A.: Recursive parameter identification for infinite-dimensional factor model by using particle filter-application to US-treasury bonds, International journal of innovative computing, information and control 4, No. 1, 35-52 (2008)
[7]Aihara, S. I.; Bagchi, A.; Saha, S.: On parameter estimation of stochastic volatility models from stock data using particle filter-application to AEX index, International journal of innovative computing, information and control 5, No. 1, 17-28 (2009)
[8]Chiuso, A.: The role of vector autoregressive modeling in predictor-based subspace identification, Automatica 43, No. 6, 1034-1048 (2007)
[9]Mecère, G.; Bako, L.; Lecoeuche, S.: Propagator-based methods for recursive subspace model identification, Signal processing 88, No. 3, 468-491 (2008) · Zbl 1186.94235 · doi:10.1016/j.sigpro.2007.09.012
[10]Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[11]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control 50, No. 3, 397-402 (2005)
[12]Ding, F.; Chen, T.: Hierarchical identification of lifted state–space models for general dual-rate systems, IEEE transactions on circuits and systems. I. regular papers 52, No. 6, 1179-1187 (2005)
[13]Guidorzi, R.: Canonical structures in identification of multivariable systems, Automatica 11, No. 4, 361-374 (1975) · Zbl 0309.93012 · doi:10.1016/0005-1098(75)90085-0
[14]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[15]Han, L. L.; Sheng, J.; Shi, Y.; Ding, F.: Auxiliary model identification method for multirate multi-input systems based on least squares, Mathematical and computer modelling 50, No. 7–8, 1100-1106 (2009) · Zbl 1185.93139 · doi:10.1016/j.mcm.2009.06.002
[16]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[17]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[18]Zhang, J. B.; Ding, F.; Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems control letters 58, No. 1, 69-75 (2009) · Zbl 1154.93040 · doi:10.1016/j.sysconle.2008.08.005
[19]Han, L. L.; Ding, F.: Identification for multirate multi-input systems using the multi-innovation identification theory, Computers mathematics with applications 57, No. 9, 1438-1449 (2009) · Zbl 1186.93076 · doi:10.1016/j.camwa.2009.01.005
[20]Ding, J.; Ding, F.: The residual based extended least squares identification method for dual-rate systems, Computers mathematics with applications 56, No. 6, 1479-1487 (2008) · Zbl 1155.93435 · doi:10.1016/j.camwa.2008.02.047
[21]Ding, F.; Yang, H. Z.; Liu, F.: Performance analysis of stochastic gradient algorithms under weak conditions, Science in China series F. Information sciences 51, No. 9, 1269-1280 (2008) · Zbl 1145.93050 · doi:10.1007/s11432-008-0117-y
[22]Goodwin, G. C.; Sin, K. S.: Adaptive filtering, prediction and control, (1984)
[23]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems, Computers mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[24]Ding, F.; Chen, T.; Qiu, L.: Bias compensation based recursive least squares identification algorithm for MISO systems, IEEE transactions on circuits and systems. II. express briefs 53, No. 5, 349-353 (2006)
[25]Ding, F.; Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40, No. 10, 1739-1748 (2004) · Zbl 1162.93376 · doi:10.1016/j.automatica.2004.05.001
[26]Ding, F.; Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control 50, No. 9, 1436-1441 (2005)
[27]Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man and cybernetics, part A: systems and humans 38, No. 4, 966-975 (2008)
[28]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[29]Sheng, J.; Chen, T.; Shah, S. L.: Generalized predictive control for non-uniformly sampled systems, Journal of process control 12, No. 8, 875-885 (2002)
[30]Sheng, J.; Chen, T.; Shah, S. L.: Optimal filtering for multirate systems, IEEE transactions on circuits and systems 52, No. 4, 228-232 (2005)
[31]Ding, F.; Shi, Y.; Chen, T.: Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems control letters 56, No. 5, 373-380 (2007) · Zbl 1130.93055 · doi:10.1016/j.sysconle.2006.10.026
[32]Ding, F.; Chen, T.: Identification of Hammerstein nonlinear ARMAX systems, Automatica 41, No. 9, 1479-1489 (2005) · Zbl 1086.93063 · doi:10.1016/j.automatica.2005.03.026