zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A limit theorem for trees of alleles in branching processes with rare neutral mutations. (English) Zbl 1193.60099
Summary: We are interested in the genealogical structure of alleles for a Bienaymé-Galton-Watson branching process with neutral mutations (infinite alleles model), in the situation where the initial population is large and the mutation rate small. We shall establish that for an appropriate regime, the process of the sizes of the allelic sub-families converges in distribution to a certain continuous state branching process (i.e., a Jiřina process) in discrete time. Itô’s excursion theory and the Lévy-Itô decomposition of subordinators provide fundamental insights for the results.
MSC:
60J80Branching processes
60J05Discrete-time Markov processes on general state spaces
References:
[1]Athreya, K. B.; Ney, P. E.: Branching processes, (1972)
[2]Bertoin, J.: The structure of the allelic partition of the total population for Galton–Watson processes with neutral mutations, Ann. probab. 37, 1502-1523 (2009) · Zbl 1180.92063 · doi:10.1214/08-AOP441
[3]Chauvin, B.: Sur la propriété de branchement, Ann. inst. Henri Poincaré B 22, 233-236 (1986) · Zbl 0597.60079 · doi:numdam:AIHPB_1986__22_2_233_0
[4]Dwass, M.: The total progeny in a branching process, J. appl. Probab. 6, 682-686 (1969) · Zbl 0192.54401 · doi:10.2307/3212112
[5]Ewens, W. J.: The sampling theory of selectively neutral alleles, Theoret. popul. Biol. 3, 87-112 (1972) · Zbl 0245.92009
[6]W. Feller, Diffusion processes in genetics, in: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, Calif, 1951, pp. 227–246. · Zbl 0045.09302
[7]B. Griffiths, D. Spanò, Diffusion processes and coalescent trees, Special volume of the London Mathematical Society for the 70th birthday of Sir John Kingman.
[8]Harris, Th.E.: The theory of branching process, (1963) · Zbl 0117.13002
[9]Itô, K.: Stochastic processes, Lectures given at Aarhus university (2004)
[10]K. Itô, Poisson point processes attached to Markov processes, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III, Univ. California Press, Berkeley, Calif, 1972, pp. 225–239, Available via: http://projecteuclid.org/euclid.bsmsp/1200514340. · Zbl 0284.60051
[11]Jagers, P.: Branching processes with biological applications, (1975) · Zbl 0356.60039
[12]Jiřina, M.: Stochastic branching processes with continuous state space, Czechoslovak math. J. 8, 292-313 (1958) · Zbl 0168.38602
[13]Kallenberg, O.: Foundations of modern probability, (2002)
[14]Kingman, J. F. C.: The coalescent, Stochastic process. Appl. 13, 235-248 (1982) · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[15]Le Gall, J. -F.: Itô’s excursion theory and random trees, Stochastic process. Appl. 120, 721-749 (2010) · Zbl 1191.60093 · doi:10.1016/j.spa.2010.01.015
[16]Pitman, J.: Combinatorial stochastic processes, Lect. notes in maths 1875 (2006) · Zbl 1103.60004
[17]Taïb, Z.: Branching processes and neutral evolution, Lecture notes in biomathematics 93 (1992) · Zbl 0748.60081
[18]Watanabe, S.: Itô’s theory of excursion point processes and its developments, Stochastic process. Appl. 120, 653-677 (2010) · Zbl 1201.60052 · doi:10.1016/j.spa.2010.01.012
[19]Wilf, H. S.: Generatingfunctionology, (1994) · Zbl 0831.05001