×

On Linstedt-Poincaré techniques for the quintic Duffing equation. (English) Zbl 1193.65142

Summary: An artificial parameter method for the quintic Duffing equation is presented. The method is based on the introduction of a linear stiffness term and a new dependent variable both of which are proportional to the unknown frequency of oscillation, the introduction of an artificial parameter and the expansion of both the solution and the unknown frequency of oscillation in series of the artificial parameter, and results in linear ordinary differential equations at each order in the parameter. By imposing the nonsecularity condition at each order in the expansion, the method provides different approximations to both the solution and the frequency of oscillation. The method does not require that a small parameter be present in the governing equation, and its results are compared with those of Linstedt-Poincaré, modified Linstedt-Poincaré, harmonic balance and Galerkin techniques. It is shown that these four techniques predict the same first-order approximation to the frequency of oscillation as the artificial parameter method presented in this paper, and the latter introduces higher order corrections at second order, whereas similar corrections are introduced by the Linstedt-Poincaré and modified Linstedt-Poincaré methods at orders equal to and higher than three.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nayfeh, A. H., Perturbation Methods (1973), John Wiley & Sons: John Wiley & Sons New York · Zbl 0375.35005
[2] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), John Wiley & Sons: John Wiley & Sons New York
[3] Kevorkian, J.; Cole, J. D., Multiple Scale and Singular Perturbation Methods (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0846.34001
[4] He, Ji.-H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys., 20, 1141-1199 (2006) · Zbl 1102.34039
[5] He, Ji.-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[6] He, Ji.-H., Addendum: new interpretation of homotopy perturbation method, Int. J. Mod. Phys., 20, 2561-2568 (2006)
[7] He, Ji.-H., Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[8] Liao, S.-J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Non-linear Mech., 38, 1173-1183 (2003) · Zbl 1348.74225
[9] Liao, S. J., Beyond Perturbation (2003), CRC Press: CRC Press Boca Raton, Florida
[10] He, J.-H., Modified Linstedt-Poincare methods for some non-linear oscillations. Part I: expansion of constant, J. Non-linear Mech., 37, 309-314 (2002)
[11] Öziş, T.; Yıldırım, A., Determination of periodic solution of a \(u^{1/3}\) force by He’s modified Linstedt-Poincaré method, J. Sound Vibr., 301, 415-419 (2007) · Zbl 1242.70044
[12] Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447-1455 (1989) · Zbl 0684.34008
[13] Mickens, R. E., Iteration procedure for determining approximate solutions to non-linear oscillator equations, J. Sound Vibr., 116, 185-187 (1987) · Zbl 1235.70006
[14] Hu, H.; Tang, J. H., A classical iteration procedure valid for certain strongly nonlinear oscillators, J. Sound Vibr., 299, 397-402 (2007) · Zbl 1241.70032
[15] Hu, H.; Tang, J. H., A convolution integral method for certain strongly nonlinear oscillators, J. Sound Vibr., 285, 1235-1241 (2005) · Zbl 1238.34068
[16] Mickens, R. E., A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”, J. Sound Vibr., 287, 1045-1051 (2005) · Zbl 1243.65079
[17] Lim, C. W.; Wu, B. S., A modified Mickens procedure for certain non-linear oscillators, J. Sound Vibr., 257, 202-206 (2002) · Zbl 1237.70109
[18] Mickens, R. E., Iteration method solutions for conservative and limit-cycle \(x^{1/3}\) force oscillators, J. Sound Vibr., 292, 964-968 (2006) · Zbl 1243.34051
[19] Hu, H., Solutions of nonlinear oscillators with fractional powers by an iterative procedure, J. Sound Vibr., 294, 608-614 (2006) · Zbl 1243.34005
[20] Marinca, V.; Herinasu, N., A modified iteration perturbation method for some nonlinear oscillation problems, Acta Mech., 184, 142-231 (2006) · Zbl 1106.70014
[21] Wu, B. S.; Sun, W. P.; Lim, C. W., An analytical approximate technique for a class of strongly non-linear oscillators, Int. J. Non-linear Mech., 41, 766-774 (2006) · Zbl 1160.70340
[22] Wu, B. S.; Lim, C. W.; Ma, Y. F., Analytical approximation to large-amplitude oscillation of a non-linear conservative system, Int. J. Non-linear Mech., 38, 1037-1043 (2003) · Zbl 1348.34075
[23] Wu, B. S.; Lim, C. W., Large amplitude non-linear oscillations of a general conservative system, Int. J. Non-linear Mech., 39, 859-870 (2004) · Zbl 1348.34074
[24] Wu, B.; Li, P., A method for obtaining approximate analytic periods for a class of nonlinear oscillators, Meccanica, 36, 167-176 (2001) · Zbl 1008.70016
[25] Amore, P.; Aranda, A., Improved Linstedt-Poicaré method for the solution of nonlinear problems, J. Sound Vibr., 283, 1115-1136 (2005) · Zbl 1237.70097
[26] Amore, P.; Lamas, H. M., High order analysis of nonlinear periodic differential equations, Phys. Lett. A, 327, 158-166 (2004) · Zbl 1138.34318
[27] Amore, P.; Aranda, A., Presenting a new method for the solution of nonlinear problems, Phys. Lett. A, 316, 218-225 (2003) · Zbl 1034.34010
[28] Amore, P.; Sanchez, N. E., Development of accurate solutions for a classical oscillator, J. Sound Vibr., 283, 345-351 (2007) · Zbl 1241.70030
[29] Amore, P.; Raya, A.; Fernández, F. M., Comparison of alternative improved perturbative methods for nonlinear oscillations, Phys. Lett. A, 340, 201-208 (2005) · Zbl 1145.70323
[30] Pelster, A.; Kleinert, H.; Schanz, M., High-order variational calculation for the frequency of time-periodic solutions, Phys. Rev. E, 67, 016604-1/6 (2003)
[31] Senator, M.; Bapat, C. N., A perturbation technique that works even when the non-linearity is not small, J. Sound Vibr., 164, 1-27 (1993) · Zbl 0925.70293
[32] Wu, B. S.; Lim, C. W.; Li, P. S., A generalization of the Senator-Bapat method for certain strongly nonlinear oscillators, Phys. Lett. A, 341, 164-169 (2005)
[33] Cheung, Y. K.; Chen, S. H.; Lau, S. L., A modified Linstedt-Poincaré method for certain strongly non-linear oscillators, Int. J. Non-linear Mech., 26, 367-378 (1991) · Zbl 0755.70021
[34] Hu, H.; Xiong, Z. G., Comparison of two Linstedt-Poincaré-type perturbation methods, J. Sound Vibr., 278, 437-444 (2004) · Zbl 1236.34050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.