zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The variational iteration method for solving a neutral functional-differential equation with proportional delays. (English) Zbl 1193.65145
Summary: The variational iteration method is applied to neutral functional-differential equations with proportional delays. Illustrative examples are given to show the efficiency of the method. We also compare the performance of the method with that of a particular Runge-Kutta method and a one-leg θ-method.
MSC:
65L99Numerical methods for ODE
References:
[1]He, Jihuan: Variational iteration method–A kind of non-linear analytical technique: some examples, Internat. J. Non-linear mech. 34, No. 4, 699-708 (1999)
[2]He, Jihuan: Variational iteration method–some recent results and new interpretations, J. comput. Appl. math. 207, No. 1, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[3]He, Jihuan; Wu, Xuhong: Variational iteration method: new development and applications, Comput. math. Appl. 54, No. 7–8, 881-894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[4]He, Jihuan; Wu, Guocheng; Austin, F.: The variational iteration method which should be followed, Nonlinear sci. Lett. A 1, No. 1, 1-30 (2010)
[5]Herisanu, Nicolae; Marinca, Vasile: A modified variational iteration method for strongly nonlinear problems, Nonlinear sci. Lett. A 1, No. 2, 183-192 (2010)
[6]Golbabai, A.; Javidi, M.: A variational iteration method for solving parabolic partial differential equations, Comput. math. Appl. 54, No. 7–8, 987-992 (2007) · Zbl 1141.65385 · doi:10.1016/j.camwa.2006.12.042
[7]Lu, Junfeng: Variational iteration method for solving a nonlinear system of second-order boundary value problems, Comput. math. Appl. 54, No. 7–8, 1133-1138 (2007) · Zbl 1141.65374 · doi:10.1016/j.camwa.2006.12.060
[8]Ramos, J. I.: On the variational iteration method and other iterative techniques for nonlinear differential equations, Appl. math. Comput. 199, No. 1, 39-69 (2008) · Zbl 1142.65082 · doi:10.1016/j.amc.2007.09.024
[9]Yu, Zhanhua: Variational iteration method for solving the multi-pantograph delay equation, Phys. lett. A 372, No. 43, 6475-6479 (2008) · Zbl 1225.34024 · doi:10.1016/j.physleta.2008.09.013
[10]Shou, Dahua; He, Jihuan: Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. lett. A 372, No. 3, 233-237 (2008) · Zbl 1217.35091 · doi:10.1016/j.physleta.2007.07.011
[11]Hemeda, A. A.: Variational iteration method for solving wave equation, Comput. math. Appl. 56, No. 8, 1948-1953 (2008) · Zbl 1165.65396 · doi:10.1016/j.camwa.2008.04.010
[12]Wazwaz, Abdul-Majid: A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos solitons fractals 37, No. 4, 1136-1142 (2008) · Zbl 1148.35353 · doi:10.1016/j.chaos.2006.10.009
[13]Noor, Muhammad Aslam; Noor, Khalida Inayat; Mohyud-Din, Syed Tauseef: Variational iteration method for solving sixth-order boundary value problems, Commun. nonlinear sci. Numer. simul. 14, No. 6, 2571-2580 (2009) · Zbl 1221.65176 · doi:10.1016/j.cnsns.2008.10.013
[14]Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method, Comput. math. Appl. 57, No. 3, 483-487 (2009) · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[15]Tian, Lixin; Yin, Jiuli: Shock-peakon and shock-compacton solutions for K(p,q) equation by variational iteration method, J. comput. Appl. math. 207, No. 1, 46-52 (2007) · Zbl 1119.65099 · doi:10.1016/j.cam.2006.07.026
[16]Bellen, Alfredo; Zennaro, Marino: Numerical methods for delay differential equations, (2003)
[17]Ishiwata, Emiko; Muroya, Yoshiaki: Rational approximation method for delay differential equations with proportional delay, Appl. math. Comput. 187, No. 2, 741-747 (2007) · Zbl 1117.65105 · doi:10.1016/j.amc.2006.08.086
[18]Ishiwata, Emiko; Muroya, Yoshiaki; Brunner, Hermann: A super-attainable order in collocation methods for differential equations with proportional delay, Appl. math. Comput. 198, No. 1, 227-236 (2008) · Zbl 1137.65047 · doi:10.1016/j.amc.2007.08.078
[19]Hu, Peng; Huang, Chengming; Wu, Shulin: Asymptotic stability of linear multistep methods for nonlinear neutral delay differential equations, Appl. math. Comput. 211, No. 1, 95-101 (2009)
[20]Wang, Wansheng; Zhang, Yuan; Li, Shoufu: Stability of continuous Runge–Kutta-type methods for nonlinear neutral delay-differential equations, Appl. math. Modell. 33, No. 8, 3319-3329 (2009) · Zbl 1205.65214 · doi:10.1016/j.apm.2008.10.038
[21]Wang, Wansheng; Li, Shoufu: On the one-leg θ-methods for solving nonlinear neutral functional differential equations, Appl. math. Comput. 193, No. 1, 285-301 (2007) · Zbl 1193.34156 · doi:10.1016/j.amc.2007.03.064
[22]Wang, Wansheng; Qin, Tingting; Li, Shoufu: Stability of one-leg θ-methods for nonlinear neutral differential equations with proportional delay, Appl. math. Comput. 213, No. 1, 177-183 (2009) · Zbl 1172.65044 · doi:10.1016/j.amc.2009.03.010
[23]He, Jihuan: Variational iteration method for autonomous ordinary differential systems, Appl. math. Comput. 114, No. 2–3, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6