zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. (English) Zbl 1193.65229
Summary: The main aim of this paper is to apply the Legendre polynomials for the solution of the linear Fredholm integro-differential-difference equation of high order. This equation is usually difficult to solve analytically. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The operational matrices of delay and derivative together with the tau method are then utilized to evaluate the unknown coefficients of shifted Legendre polynomials. Illustrative examples are included to demonstrate the validity and applicability of the presented technique and a comparison is made with existing results.
MSC:
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
References:
[1]Dehghan, M.; Saadatmandi, A.: Chebyshev finite difference method for Fredholm integro-differential equation, Int. J. Comput. math. 85, No. 1, 123-130 (2008) · Zbl 1131.65107 · doi:10.1080/00207160701405436
[2]Lakestani, M.; Razzaghi, M.; Dehghan, M.: Semiorthogonal wavelets approximation for Fredholm integro-differential equations, Math. probl. Eng. 2006, 1-12 (2006) · Zbl 1200.65112 · doi:10.1155/MPE/2006/96184
[3]Jackiewicz, Z.; Rahman, M.; Welfert, B. D.: Numerical solution of a Fredholm integro-differential equation modelling neural networks, Appl. numer. Math. 56, 423-432 (2006) · Zbl 1089.65136 · doi:10.1016/j.apnum.2005.04.020
[4]Wazwaz, A. M.: A first course in integral equations, (1997) · Zbl 0924.45001
[5]Bainov, D. D.; Dimitrova, M. B.; Dishliev, A. B.: Oscillation of the bounded solutions of impulsive differential-difference equations of second order, Appl. math. Comput. 114, 61-68 (2000) · Zbl 1030.34062 · doi:10.1016/S0096-3003(99)00102-2
[6]Kadalbajoo, M. K.; Sharma, K. K.: Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. optim. Theory appl. 115, 145-163 (2002) · Zbl 1023.65079 · doi:10.1023/A:1019681130824
[7]Gulsu, M.; Sezer, M.: A Taylor polynomial approach for solving differential-difference equations, J. comput. Appl. math. 186, 349-364 (2006) · Zbl 1078.65551 · doi:10.1016/j.cam.2005.02.009
[8]Saaty, T. L.: Modern nonlinear equations, (1981)
[9]Gulsu, M.; Sezer, M.: Approximations to the solution of linear Fredholm integro-differential-difference equation of high order, J. franklin inst. 343, 720-737 (2006) · Zbl 1113.65122 · doi:10.1016/j.jfranklin.2006.07.003
[10]Dehghan, M.: Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. math. 83, No. 1, 123-129 (2006) · Zbl 1087.65119 · doi:10.1080/00207160500069847
[11]Wazwaz, A. M.; Khuri, S. A.: Two methods for solving integral equations, Appl. math. Comput. 77, 79-89 (1996) · Zbl 0846.65077 · doi:10.1016/0096-3003(95)00189-1
[12]D. Mirzaei, M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. (2009) Corrected Proof, in press (Available online doi:10.1016/j.apnum.2009.12.003).
[13]Alipanah, A.; Dehghan, M.: Numerical solution of the nonlinear Fredholm integral equations by positive definite functions, Appl. math. Comput. 190, 1754-1761 (2007) · Zbl 1122.65408 · doi:10.1016/j.amc.2007.02.063
[14]Shakourifar, M.; Dehghan, M.: On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments, Computing 82, 241-260 (2008) · Zbl 1154.65098 · doi:10.1007/s00607-008-0009-4
[15]Dehghan, M.; Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic fields using he’s homotopy perturbation method, Progr. in electromagn. Res., PIER 78, 361-376 (2008)
[16]M. Dehghan, F. Shakeri, Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique, Comm. Numer. Methods Engrg. (2008) in press (doi:10.1002/cnm.1166).
[17]Dehghan, M.; Shakourifar, M.; Hamidi, A.: The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Padé technique, Chaos solitons fractals 39, 2509-2521 (2009) · Zbl 1197.65223 · doi:10.1016/j.chaos.2007.07.028
[18]Nas, S.; Yalcinbas, S.; Sezer, M.: A Taylor polynomial approach for solving high order linear Fredholm integro-differential equations, Int. J. Math. educ. Sci. technol. 31, No. 2, 213-225 (2000) · Zbl 1018.65152 · doi:10.1080/002073900287273
[19]Sezer, M.; Gulsu, M.: Polynomial solution of the most general linear Fredholm–Volterra integro differential-difference equations by means of Taylor collocation method, Appl. math. Comput. 185, 646-657 (2007) · Zbl 1107.65353 · doi:10.1016/j.amc.2006.07.051
[20]Sezer, M.; Gulsu, M.: A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument, Appl. math. Comput. 171, 332-344 (2005) · Zbl 1084.65133 · doi:10.1016/j.amc.2005.01.051
[21]Lanczos, C.: Trigonometric interpolation of empirical and analytic functions, J. math. Phys. 17, 123-199 (1938) · Zbl 0020.01301
[22]Ortiz, E. L.: The tau method, SIAM J. Numer. anal. Optim. 12, 480-492 (1969) · Zbl 0195.45701 · doi:10.1137/0706044
[23]Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamic, (1988) · Zbl 0658.76001
[24]Gottlieb, D.; Hussaini, M. Y.; Orszag, S.: R.voigtd.gottliebm.hussainitheory and applications of spectral methods for partial differential equations, Theory and applications of spectral methods for partial differential equations (1984)
[25]Kalla, S. L.; Khajah, H. G.: Tau approximation method of the hubbell rectangular source integral, Radiat. phys. Chem. 59, No. 1, 17-21 (2000)
[26]Saadatmandi, A.; Razzaghi, M.: A tau method approximation for the diffusion equation with nonlocal boundary conditions, Int. J. Comput. math. 81, 1427-1432 (2004) · Zbl 1063.65110 · doi:10.1080/00207160412331284060
[27]Dehghan, M.; Saadatmandi, A.: A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification, Comput. math. Appl. 52, 933-940 (2006) · Zbl 1125.65340 · doi:10.1016/j.camwa.2006.04.017
[28]Saadatmandi, A.; Dehghan, M.: Numerical solution of the one-dimensional wave equation with an integral condition, Numer. methods partial differential equations 23, 282-292 (2007) · Zbl 1112.65097 · doi:10.1002/num.20177
[29]Lee, L.; Kung, F. C.: Shifted Legendre series solution and parameter estimation of linear delayed system, Internat. J. Systems sci. 16, 1249-1256 (1985) · Zbl 0568.93028 · doi:10.1080/00207728508926748
[30]Hwang, C.; Chen, M. Y.: A direct approach using the shifted Legendre series expansion for near optimum control of linear time-varying systems with multiple state and control delays, Internat. J. Control 43, 1673-1692 (1986) · Zbl 0586.93048 · doi:10.1080/00207178608933567
[31]Behiry, S. H.; Hashish, H.: Wavelet methods for the numerical solution of Fredholm integro-differential equations, Int. J. Appl. math. 11, No. 1, 27-35 (2002) · Zbl 1029.65146
[32]Wazwaz, A. M.: A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Appl. math. Comput. 118, 327-342 (2001) · Zbl 1023.65150 · doi:10.1016/S0096-3003(99)00225-8