×

Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. (English) Zbl 1193.65229

Summary: The main aim of this paper is to apply the Legendre polynomials for the solution of the linear Fredholm integro-differential-difference equation of high order. This equation is usually difficult to solve analytically. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The operational matrices of delay and derivative together with the tau method are then utilized to evaluate the unknown coefficients of shifted Legendre polynomials. Illustrative examples are included to demonstrate the validity and applicability of the presented technique and a comparison is made with existing results.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dehghan, M.; Saadatmandi, A., Chebyshev finite difference method for Fredholm integro-differential equation, Int. J. Comput. Math., 85, 1, 123-130 (2008) · Zbl 1131.65107
[2] Lakestani, M.; Razzaghi, M.; Dehghan, M., Semiorthogonal wavelets approximation for Fredholm integro-differential equations, Math. Probl. Eng., 2006, 1-12 (2006) · Zbl 1200.65112
[3] Jackiewicz, Z.; Rahman, M.; Welfert, B. D., Numerical solution of a Fredholm integro-differential equation modelling neural networks, Appl. Numer. Math., 56, 423-432 (2006) · Zbl 1089.65136
[4] Wazwaz, A. M., A First Course in Integral Equations (1997), World Scientific: World Scientific River Edge, NJ
[5] Bainov, D. D.; Dimitrova, M. B.; Dishliev, A. B., Oscillation of the bounded solutions of impulsive differential-difference equations of second order, Appl. Math. Comput., 114, 61-68 (2000) · Zbl 1030.34062
[6] Kadalbajoo, M. K.; Sharma, K. K., Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Optim. Theory Appl., 115, 145-163 (2002) · Zbl 1023.65079
[7] Gulsu, M.; Sezer, M., A Taylor polynomial approach for solving differential-difference equations, J. Comput. Appl. Math., 186, 349-364 (2006) · Zbl 1078.65551
[8] Saaty, T. L., Modern Nonlinear Equations (1981), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0148.28202
[9] Gulsu, M.; Sezer, M., Approximations to the solution of linear Fredholm integro-differential-difference equation of high order, J. Franklin Inst., 343, 720-737 (2006) · Zbl 1113.65122
[10] Dehghan, M., Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math., 83, 1, 123-129 (2006) · Zbl 1087.65119
[11] Wazwaz, A. M.; Khuri, S. A., Two methods for solving integral equations, Appl. Math. Comput., 77, 79-89 (1996) · Zbl 0846.65077
[12] D. Mirzaei, M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. (2009) Corrected Proof, in press (Available online doi:10.1016/j.apnum.2009.12.003; D. Mirzaei, M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. (2009) Corrected Proof, in press (Available online doi:10.1016/j.apnum.2009.12.003
[13] Alipanah, A.; Dehghan, M., Numerical solution of the nonlinear Fredholm integral equations by positive definite functions, Appl. Math. Comput., 190, 1754-1761 (2007) · Zbl 1122.65408
[14] Shakourifar, M.; Dehghan, M., On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments, Computing, 82, 241-260 (2008) · Zbl 1154.65098
[15] Dehghan, M.; Shakeri, F., Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method, Progr. In Electromagn. Res., PIER, 78, 361-376 (2008)
[16] M. Dehghan, F. Shakeri, Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique, Comm. Numer. Methods Engrg. (2008) in press (doi:10.1002/cnm.1166; M. Dehghan, F. Shakeri, Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique, Comm. Numer. Methods Engrg. (2008) in press (doi:10.1002/cnm.1166 · Zbl 1192.65158
[17] Dehghan, M.; Shakourifar, M.; Hamidi, A., The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique, Chaos Solitons Fractals, 39, 2509-2521 (2009) · Zbl 1197.65223
[18] Nas, S.; Yalcinbas, S.; Sezer, M., A Taylor polynomial approach for solving high order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 2, 213-225 (2000) · Zbl 1018.65152
[19] Sezer, M.; Gulsu, M., Polynomial solution of the most general linear Fredholm-Volterra integro differential-difference equations by means of Taylor collocation method, Appl. Math. Comput., 185, 646-657 (2007) · Zbl 1107.65353
[20] Sezer, M.; Gulsu, M., A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument, Appl. Math. Comput., 171, 332-344 (2005) · Zbl 1084.65133
[21] Lanczos, C., Trigonometric interpolation of empirical and analytic functions, J. Math. Phys., 17, 123-199 (1938) · Zbl 0020.01301
[22] Ortiz, E. L., The Tau method, SIAM J. Numer. Anal. Optim., 12, 480-492 (1969) · Zbl 0195.45701
[23] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamic (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0658.76001
[24] Gottlieb, D.; Hussaini, M. Y.; Orszag, S., (Voigt, R.; Gottlieb, D.; Hussaini, M., Theory and Applications of Spectral Methods for Partial Differential Equations (1984), SIAM: SIAM Philadelphia)
[25] Kalla, S. L.; Khajah, H. G., Tau approximation method of the Hubbell rectangular source integral, Radiat. Phys. Chem., 59, 1, 17-21 (2000) · Zbl 0872.33014
[26] Saadatmandi, A.; Razzaghi, M., A Tau method approximation for the diffusion equation with nonlocal boundary conditions, Int. J. Comput. Math., 81, 1427-1432 (2004) · Zbl 1063.65110
[27] Dehghan, M.; Saadatmandi, A., A Tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification, Comput. Math. Appl., 52, 933-940 (2006) · Zbl 1125.65340
[28] Saadatmandi, A.; Dehghan, M., Numerical solution of the one-dimensional wave equation with an integral condition, Numer. Methods Partial Differential Equations, 23, 282-292 (2007) · Zbl 1112.65097
[29] Lee, L.; Kung, F. C., Shifted Legendre series solution and parameter estimation of linear delayed system, Internat. J. Systems Sci., 16, 1249-1256 (1985) · Zbl 0568.93028
[30] Hwang, C.; Chen, M. Y., A direct approach using the shifted Legendre series expansion for near optimum control of linear time-varying systems with multiple state and control delays, Internat. J. Control, 43, 1673-1692 (1986) · Zbl 0586.93048
[31] Behiry, S. H.; Hashish, H., Wavelet methods for the numerical solution of Fredholm integro-differential equations, Int. J. Appl. Math., 11, 1, 27-35 (2002) · Zbl 1029.65146
[32] Wazwaz, A. M., A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Appl. Math. Comput., 118, 327-342 (2001) · Zbl 1023.65150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.