zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Zitterbewegung in quantum mechanics. (English) Zbl 1193.81020
This interesting paper contains a research program investigating implications of the real Dirac equation for the interpretation and extension of quantum mechanics. The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics is explored by constructing a particle model with some features inherent in the well known Dirac equation. The author discusses a self-contained dynamical model of the electron as a lightlike particle with helical zitterbewegung and electromagnetic interactions. This model admits periodic solutions with quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes to the electron an electric dipole moment rotating with ultrahigh frequency. The possibility of observing this directly as a resonance in electron channeling is analyzed in detail. Correspondence with the Dirac equation is discussed. A modification of the Dirac equation is suggested to incorporate the rotating dipole moment. An interesting conclusion is that the relation of the zitterbewegung particle model to the Dirac equation can be considered from two different perspectives. On the one hand, it can be regarded as a “quasiclassical” approximation that embodies structural features of the Dirac equation in a convenient form. On the other hand, it can be regarded as formulating fundamental properties of the electron that are manifested in the Dirac equation in some kind of average form.
MSC:
81Q05Closed and approximate solutions to quantum-mechanical equations
70H40Relativistic dynamics
References:
[1]Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003) · doi:10.1119/1.1571836
[2]Hestenes, D.: Mysteries and insights of Dirac theory. Ann. Fond. Louis Broglie 28, 390–408 (2003)
[3]Hestenes, D.: Real Dirac theory. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 97–144. UNAM, Mexico (1997). Unfortunately, the published text is marred by annoying font substitutions
[4]Bender, D., et al.: Tests of QED at 29 GeV center-of-mass energy. Phys. Rev. D 30, 515 (1984) · doi:10.1103/PhysRevD.30.515
[5]Bohm, D., Hiley, B.: The Undivided Universe, an Ontological Interpretation of Quantum Theory, 2nd edn. Routledge, London (1993), p. 220
[6]Schroedinger, E.: Über die kräftfreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24(418) (1930)
[7]Frenkel, J.: Die electrodynamik des rotierenden electrons. Z. Phys. 36, 243–262 (1926)
[8]Thomas, L.H.: Kinematics of an electron with an axis. Philos. Mag. 3, 1–22 (1927)
[9]Mathisson, M.: Neue mechanik materieller systeme. Acta Phys. Pol. 6, 163–200 (1937)
[10]Weyssenhoff, J.: On two relativistic models of Dirac’s electron. Acta Phys. Pol. 9, 47–53 (1947)
[11]Corben, H.: Classical and Quantum Theory of Spinning Particles, 2nd edn. Holden-Day, San Francisco (1948)
[12]Gürsey, F.: Relativistic kinematics of a classical point particle in spinor form. Nuovo Cimento 5, 785–809 (1957)
[13]Rivas, M.: Kinematical Theory of Spinning Particles. Kluwer, Dordrecht (2001)
[14]Bargman, V., Michel, L., Telegdi, V.: Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435–437 (1959) · doi:10.1103/PhysRevLett.2.435
[15]Costa de Beauregard, O.: Noncollinearity of velocity and momentum of spinning particles. Found. Phys. 2, 111–126 (1972) · doi:10.1007/BF00708496
[16]Doran, C., Lasenby, A., Gull, S., Somaroo, S., Challinor, A.: Spacetime algebra and electron physics. Adv. Imaging Electron Phys. 95, 271 (1996) · doi:10.1016/S1076-5670(08)70158-7
[17]Rivas, M.: Is there a classical spin contribution to the tunnel effect? Phys. Lett. A 248, 279 (1998) · doi:10.1016/S0375-9601(98)00703-8
[18]Weyssenhoff, J.: Relativistically invariant homogeneous canonical formalism with higher derivatives. Acta Phys. Pol. 11, 49–70 (1951)
[19]Krüger, H.: The electron as a self-interacting lightlike point charge: Classification of lightlike curves in spacetime under the group of SO(1,3) motions. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 145–162. UNAM, Mexico (1997)
[20]Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)
[21]Proca, A.: Mechanique du point. J. Phys. Radium 15, 15–72 (1954) · Zbl 0055.22008 · doi:10.1051/jphysrad:0195400150206500
[22]Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984) · doi:10.1103/PhysRevLett.52.2009
[23]Gull, S.F.: Charged particles at potential steps. In: Hestenes, D., Weingartshafer, A. (eds.) The Electron, pp. 37–48. Kluwer, Dordrecht (1991)
[24]Lasenby, A., Doran, C., Gull, S.: A multivector derivative approach to Lagrangian field theory. Found. Phys. 23, 1295–1327 (1993) · doi:10.1007/BF01883781
[25]Schwinberg, P., Van Dyck, R. Jr., Dehmelt, H.: Electron magnetic moment from geonium spectra: Early experiments and background concepts. Phys. Rev. D 34, 722–736 (1986) · doi:10.1103/PhysRevD.34.722
[26]Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47, 399–415 (1979) · doi:10.1119/1.11806
[27]Yoshioka, D.: The Quantum Hall Effect. Springer, Berlin (2002)
[28]Bjorken, J., Drell, S.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)
[29]Gouanère, M., Spighel, M., Cue, N., Gaillard, M.J., Genre, R., Kirsh, R.G., Poizat, J.C., Remillieux, J., Catillon, P., Roussel, L.: Experimental observation compatible with the particle internal clock. Ann. Fond. Louis Broglie 30, 109–115 (2005)
[30]Gemmell, D.: Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129–227 (1974) · doi:10.1103/RevModPhys.46.129
[31]Lindhard, J.: Influence of crystal lattice on motion of energetic charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 34(14), 1–64 (1974)
[32]Morse, P., Feshbach, H.: Methods of Theoretical Physics, vol. I. McGraw-Hill, New York (1953)
[33]Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972)
[34]Landau, L., Lifshitz, E.: Mechanics. Pergamon, Oxford (1969) (p. 80)
[35]Hestenes, D.: Gauge gravity and electroweak theory. In: Jantzen, R., Kleinert, H., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting. World Scientific, Singapore (2007)
[36]Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928) · doi:10.1098/rspa.1928.0023
[37]Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1957), pp. 261–267
[38]Greiner, G.: Relativistic Quantum Mechanics, 4th edn. Springer, Berlin (1990), pp. 91–93, 233–236
[39]Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998) · doi:10.1103/PhysRevA.57.98
[40]de Broglie, L.: Ondes et quanta. C. R. Math. 177, 507–510 (1923)