×

An analysis of global robust stability of neural networks with discrete time delays. (English) Zbl 1193.92004

Summary: This letter presents a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for neural networks with discrete time delays. The obtained condition can be easily verified as it is in terms of the network parameters only. Some numerical examples are given to compare our results with previous robust stability results derived in the literature.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
68T05 Learning and adaptive systems in artificial intelligence
34K20 Stability theory of functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, K.; Michel, A. N., IEEE Trans. Circuits Systems I, 43, 7, 517 (1996)
[2] Arik, S.; Tavsanoglu, V., IEEE Trans. Circuits Systems I, 45, 168 (1998)
[3] Cao, J. D., Phys. Rev. E, 60, 3, 3244 (1999)
[4] Arik, S.; Tavsanoglu, V., IEEE Trans. Circuits Systems I, 47, 5, 571 (2000)
[5] Liao, T.-L.; Wang, F.-C., IEEE Trans. Neural Networks, 11, 1481 (2000)
[6] Takahashi, N., IEEE Trans. Circuits Systems I, 47, 793 (2000)
[7] Yi, Z.; Tan, K. K., Phys. Rev. E, 66, 011910 (2002)
[8] Yi, Z.; Heng, P. A.; Leung, K. S., IEEE Trans. Circuits Systems I, 48, 680 (2001)
[9] Liao, X.; Chen, G.; Sanchez, E. N., IEEE Trans. Circuits Systems I, 49, 1033 (2002)
[10] Mohamad, S., Physica D, 159, 233 (2001)
[11] Cao, J.; Wang, J., IEEE Trans. Circuits Systems I, 50, 34 (2003)
[12] Li, X. M.; Huand, L. H.; Zhu, H., Nonlinear Anal., 53, 319 (2003)
[13] Forti, M.; Tesi, A., IEEE Trans. Circuits Systems I, 42, 7, 354 (1995)
[14] Liu, Z. G.; Chen, A. P.; Huang, L. H., Int. J. Nonlinear Sci. Numer. Simul., 5, 4, 355 (2004)
[15] Zhang, Q.; Wei, X. P.; Xu, J., Chaos Solitons Fractals, 23, 1363 (2005)
[16] Cao, J.; Yuan, K.; Ho, D. W.C.; Lam, J., Chaos, 16, 013105 (2006)
[17] Liao, X. F.; Yu, J., IEEE Trans. Neural Networks, 9, 1042 (1998)
[18] Liao, X. F.; Wong, K. W.; Wu, Z.; Chen, G., IEEE Trans. Circuits Systems I, 48, 1355 (2001)
[19] Chen, A.; Cao, J.; Huang, L., Chaos Solitons Fractals, 23, 787 (2005)
[20] Li, X.; Cao, J., Int. J. Bifur. Chaos, 14, 2925 (2004)
[21] Sun, C.; Feng, C. B., Neural Process. Lett., 17, 107 (2003)
[22] Cao, J.; Chen, T., Chaos Solitons Fractals, 22, 957 (2004)
[23] Cao, J.; Huang, D. S.; Qu, Y., Chaos Solitons Fractals, 23, 221 (2005)
[24] Cao, J.; Wang, J., IEEE Trans. Circuits Systems I, 52, 417 (2005)
[25] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0729.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.