zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On nested split graphs whose second largest eigenvalue is less than 1. (English) Zbl 1194.05098
Summary: We determine all nested split graphs (i.e. graphs having no induced subgraphs equal to 2K 2 ,P 4 or C 4 ) having the second largest eigenvalue less than 1 and give some data and observations regarding obtained results.
MSC:
05C50Graphs and linear algebra
References:
[1]T. Bıyıkogbreve;lu, S.K. Simić, Z. Stanić, Some notes on spectra of cographs, Ars Combin., in press.
[2]Corneil, D. G.; Perl, Y.; Stewart, L. K.: A linear recognition algorithm for cographs, SIAM J. Comput. 14, 926-934 (1985) · Zbl 0575.68065 · doi:10.1137/0214065
[3]Cvetković, D.: On graphs whose second largest eigenvalue does not exceed 1, Publ. inst. Math. 31, No. 45, 15-20 (1982) · Zbl 0522.05044
[4]Cvetković, D.; Doob, M.; Sachs, H.: Spectra of graphs – theory and application, (1995)
[5]Cvetković, D.; Rowlinson, P.; Simić, S.: Eigenspaces of graphs, (1997) · Zbl 0878.05057
[6]Cvetković, D.; Rowlinson, P.; Simić, S.: Spectral generalizations of line graphs – on line graphs with least eigenvalue -2, London math. Soc., lecture notes series 314 (2004)
[7]Guo, Shu-Guang: On bicyclic graphs whose second largest eigenvalue does not exceed 1, Linear algebra appl. 407, 201-210 (2005) · Zbl 1073.05043 · doi:10.1016/j.laa.2005.05.010
[8]M. Petrović, Z. Radosavljević, Spectrally constrained graphs, Faculty of Science, Kragujevac, Yugoslavia, 2001.
[9]G.F. Royle, The rank of cographs, Electron. J. Comb. 10 (1), Research paper N11:7 p., 2003.
[10]Simić, S. K.; Marzi, E. M. Li; Belardo, F.: Connected graphs of fixed order and size with maximal index: structural considerations, Le matematiche 59, 349-365 (2004) · Zbl 1195.05045
[11]Stanić, Z.: On graphs whose second largest eigenvalue equals 1 – the star complement technique, Linear algebra appl. 420, 700-710 (2007) · Zbl 1106.05067 · doi:10.1016/j.laa.2006.08.025
[12]Stanić, Z.: On regular graphs and coronas whose second largest eigenvalue does not exceed 1, Linear and multilinear algebra (2008)
[13]Z. Stanić, S.K. Simić, On graphs with unicyclic star complement for 1 as the second largest eigenvalue, in: N. Bokan, M. Djorić, A.T. Fomenko, Z. Rakić, B. Wegner, J. Wess (Eds.), Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, June 26 – July 2, 2005, Faculty of Mathematics, Belgrade, 2006, pp. 475 – 484. · Zbl 1142.05054
[14]Xu, Guang-Hui: On unicyclic graphs whose second largest eigenvalue does not exceed 1, Discrete appl. Math. 136, 117-124 (2004) · Zbl 1032.05085 · doi:10.1016/S0166-218X(03)00203-8