zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution dependence on initial conditions in differential variational inequalities. (English) Zbl 1194.49033
Summary: In the first part of this paper, we establish several sensitivity results of the solution x(t,ξ) to the Ordinary Differential Equation (ODE) Initial-Value Problem (IVP) dx/dt=f(x), x(0)=ξ as a function of the initial value ξ for a nondifferentiable f(x). Specifically, we show that for Ξ T {x(t,ξ 0 ):0tT}, (a) if f is “B-differentiable” on Ξ T , then so is the solution operator x(t;·) at ξ 0 ; (b) if f is “semismooth” on Ξ T , then so is x(t;·) at ξ 0 ; (c) if f has a “linear Newton approximation” on Ξ T , then so does x(t;·) at ξ 0 ; moreover, the linear Newton approximation of the solution operator can be obtained from the solution of a “linear” differential inclusion. In the second part of the paper, we apply these ODE sensitivity results to a Differential Variational Inequality (DVI) and discuss (a) the existence, uniqueness, and Lipschitz dependence of solutions to subclasses of the DVI subject to boundary conditions, via an implicit function theorem for semismooth equations, and (b) the convergence of a “nonsmooth shooting method” for numerically computing such boundary-value solutions.
MSC:
49K40Sensitivity, stability, well-posedness of optimal solutions
47J20Inequalities involving nonlinear operators
49J40Variational methods including variational inequalities
References:
[1]Aubin J.P. and Cellina A. (1984). Differential Inclusions. Springer, New York
[2]Aubin J.P. and Frankowska H. (1990). Set-Valued Analysis. Birkäuser, Basel
[3]Auslender A. (1976). Optimization: Méthodes Numériques. Masson, Paris
[4]Aumann R.J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12: 1–12 · Zbl 0163.06301 · doi:10.1016/0022-247X(65)90049-1
[5]Border K.C. (1985). Fixed point theorems with applications to economics and game theory. Cambridge University Press, Cambridge
[6]Çamlibel, M.K.: Complementarity methods in the analysis of piecewise linear dynamical systems. PhD Thesis, Center for Economic Research, Tilburg University (2001)
[7]Çamlibel M.K., Heemels W.P.M.H. and Schumacher J.M. (2002). On linear passive complementarity systems. Eur. J. Control 8: 220–237 · doi:10.3166/ejc.8.220-237
[8]Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York
[9]Cottle R.W., Pang J.S. and Stone R.E. (1992). The Linear Complementarity Problem. Academic, Cambridge
[10]Facchinei F. and Pang J.S. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York
[11]Filippov A.F. (1962). On certain questions in the theory of optimal control. SIAM J. Control Optim. 1: 76–84
[12]Gowda M.S. (2004). Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods Softw. 19: 443–460 · Zbl 1099.49018 · doi:10.1080/10556780410001697668
[13]Heemels, W.P.H.: Linear complementarity systems: a study in hybrid dynamics. PhD Thesis, Department of Electrical Engineering, Eindhoven University of Technology (1999)
[14]Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Well-posedness of linear complementarity systems. In: 38th IEEE Conference on Decision and Control, Phoenix, pp. 3037–3042 (1999)
[15]Heemels W.P.M.H., Schumacher J.M. and Weiland S. (2000). Linear complementarity systems. SIAM J. Appl. Math. 60: 1234–1269 · Zbl 0954.34007 · doi:10.1137/S0036139997325199
[16]Kummer B. (1988). Newton’s method for non-differentiable functions. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lommatzsch, K., Tammer, K., Vlach, M. and Zimmermann, K. (eds) Advances in Mathematical Optimization., pp 114–125. Akademie-Verlag, Berlin
[17]Lloyd N.G. (1978). Degree Theory. Cambridge University Press, Cambridge
[18]Mifflin R. (1977). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 1: 957–972
[19]Mordukhovich B.L (2006). Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin
[20]Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York
[21]Pang J.S. and Ralph D. (1996). Piecewise smoothness, local invertibility and parametric analysis of normal maps. Math. Oper. Res. 21: 401–426 · Zbl 0857.90122 · doi:10.1287/moor.21.2.401
[22]Pang, J.S., Stewart, D.E.: Differential variational inequalities. Mathematical Programming, Series A. doi:10.1007/s10107-006-0052-x
[23]Pang J.S., Sun D. and Sun J. (2003). Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28: 39–63 · Zbl 1082.90115 · doi:10.1287/moor.28.1.39.14258
[24]Perko L. (1991). Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7. Springer, Berlin
[25]Qi L. (1993). Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18: 227–244 · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[26]Qi L. and Sun J. (1993). A nonsmooth version of Newton’s method. Math. Program. 58: 353–368 · Zbl 0780.90090 · doi:10.1007/BF01581275
[27]Robinson S.M. (1980). Strongly regular generalized equations. Math. Oper. Res. 5: 43–62 · Zbl 0437.90094 · doi:10.1287/moor.5.1.43
[28]Robinson S.M. (1992). Normal maps induced by linear transformations. Math. Oper. Res. 17: 691–714 · Zbl 0777.90063 · doi:10.1287/moor.17.3.691
[29]Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin
[30]Schumacher J.M. (2004). Complementarity systems in optimization. Math. Program. Ser. B 101: 263–296 · Zbl 1076.90060 · doi:10.1007/s10107-004-0544-5
[31]Shen J. and Pang J.S. (2005). Linear complementarity systems: Zeno states. SIAM J. Control Optim. 44: 1040–1066 · Zbl 1092.90052 · doi:10.1137/040612270
[32]Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)
[33]Teschl, G.: Ordinary differential equations and dynamical systems. Manuscript, Department of Mathematics, University of Vienna (2004). Available via URL: http://www.radon.mat.univie.ac.at/gerald/ftp/book-ode/
[34]Warga J. (1981). Fat homeomorphism and unbounded derivate containers. J. Math. Anal. Appl. 81: 545–560 · Zbl 0476.26006 · doi:10.1016/0022-247X(81)90081-0