zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized distance and enhanced Ekeland’s variational principle for vector functions. (English) Zbl 1194.58014
Summary: We propose a definition of lower closed transitive relations and prove the existence of minimal elements for such a relation. This result is shown to contain probably a large part of existing versions of Ekeland’s variational principle (EVP). We introduce the notion of a weak τ-function p as a generalized distance and use it together with the above result on minimal elements to establish enhanced EVP for various settings, under relaxed lower semicontinuity assumptions. These principles conclude the existence not only of p-strict minimizers of p-perturbations of the considered vector function, but also p-sharp and p-strong minimizers. Our results are proved to be stronger than the classical EVP and many generalizations in the literature, even in the usual one-dimensional case, by numerous corollaries and examples. We include equivalent formulations of our enhanced EVP as well.

58E30Variational principles on infinite-dimensional spaces
65K10Optimization techniques (numerical methods)
49J53Set-valued and variational analysis
90C48Programming in abstract spaces