zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
XFEM-based crack detection scheme using a genetic algorithm. (English) Zbl 1194.74309
Summary: A new computational tool is developed for the accurate detection and identification of cracks in structures, to be used in conjunction with non-destructive testing of specimens. It is based on the solution of an inverse problem. Based on some measurements, typically along part of the boundary of the structure, that describe the response of the structure to vibration in a chosen frequency or a combination of frequencies, the goal is to estimate whether the structure contains a crack, and if so, to find the parameters (location, size, orientation and shape) of the crack that produces a response closest to the given measurement data in some chosen norm. The inverse problem is solved using a genetic algorithm (GA). The GA optimization process requires the solution of a very large amount of forward problems. The latter are solved via the extended finite element method (XFEM). This enables one to employ the same regular mesh for all the forward problems. Performance of the method is demonstrated via a number of numerical examples involving a cracked flat membrane. Various computational aspects of the method are discussed, including the a priori estimation of the ill-posedness of the crack identification problem.
MSC:
74R10Brittle fracture
74H45Vibrations (dynamical problems in solid mechanics)
74S05Finite element methods in solid mechanics
Software:
XFEM