zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multiscale projection method for macro/microcrack simulations. (English) Zbl 1194.74436
Summary: We present a new multiscale method for crack simulations. This approach is based on a two-scale decomposition of the displacements and a projection to the coarse scale by using coarse scale test functions. The extended finite element method (XFEM) is used to take into account macrocracks as well as microcracks accurately. The transition of the field variables between the different scales and the role of the microfield in the coarse scale formulation are emphasized. The method is designed so that the fine scale computation can be done independently of the coarse scale computation, which is very efficient and ideal for parallelization. Several examples involving microcracks and macrocracks are given. It is shown that the effect of crack shielding and amplification for crack growth analyses can be captured efficiently.
MSC:
74S05Finite element methods in solid mechanics
74R10Brittle fracture
Software:
XFEM