zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A weakly-singular SGBEM for analysis of cracks in 3D anisotropic media. (English) Zbl 1194.74501
Summary: A weakly-singular, symmetric Galerkin boundary element method (SGBEM) is developed for analysis of fractures in three-dimensional, anisotropic linearly elastic media. The method constitutes a generalization of that by S. Li, M.E. Mear and L. Xiao [Comput. Methods Appl. Mech. Eng. 151, No. 3-4, 435–459 (1998; Zbl 0906.73074)] for isotropic media, and is based upon a pair of weak-form displacement and traction integral equations recently established by J. Rungamornrat and M. E. Mear [Int. J. Solids Struct. 45, No. 5, 1283–1301 (2008; Zbl 1169.74549)]. The formulation involves only weakly-singular kernels and, as a consequence, standard C 0 elements can be employed in the numerical discretization. The kernels possess a relatively simple form (for general anisotropy) which involves an equatorial line integral like that associated with the displacement fundamental solution. Despite their simple form, it is still necessary to evaluate these kernels efficiently in the numerical implementation; to do so, certain symmetry properties associated with the specific material type under consideration are exploited, and a simple yet accurate interpolation strategy is introduced. Another important aspect of the numerical treatment is the use of a special crack-tip element which allows highly accurate mixed-mode stress intensity factor data to be extracted as a function of position along the crack front. This crack-tip element was originally introduced by S. Li, M.E. Mear and L. Xiao [Comput. Methods Appl. Mech. Eng. 151, No. 3-4, 435–459 (1998; Zbl 0906.73074)] in their treatment of isotropic media, and here it is extended to allow evaluation of the stress intensity factors for generally anisotropic media. The element involves “extra” degrees of freedom associated with the nodes along the crack front (with these quantities being directly related to the stress intensity factors), and it is capable of representing the asymptotic behavior in the vicinity of the crack front to a sufficiently high order that relatively large crack-tip elements can be utilized. Various examples are treated for cracks in an unbounded domain and for both embedded and surface-breaking cracks in a finite domain, and it is demonstrated that very accurate results can be obtained even with relatively coarse meshes.
74S15Boundary element methods in solid mechanics
74R10Brittle fracture
[1]Andrä, H.; Schnack, E.: Integration of singular Galerkin-type boundary element integrals for 3D elasticity problems, Numer. math. 76, 143-165 (1997) · Zbl 0879.73078 · doi:10.1007/s002110050257
[2]Ariza, M. P.; Sáez, A.; Dominguez, J.: A singular element for three-dimensional fracture mechanics analysis, Engrg. anal. Bound. elem. 20, 275-285 (1997)
[3]Ariza, M. P.; Dominguez, J.: Boundary element formulation for 3D transversely isotropic cracked bodies, Int. J. Numer. methods engrg. 60, 719-753 (2004) · Zbl 1060.74649 · doi:10.1002/nme.984
[4]A.O. Ayhan, A.C. Kaya, A. Loghin, J.H. Laflen, R.D. McClain, D. Slavik, Fracture analysis of cracks in orthotropic materials using ANSYS®nbsp;, in: Proceedings of GT2006, Barcelona, Spain, May 8-11, 2006.
[5]Bacon, D. J.; Barnett, D. M.; Scattergood, R. O.: Anisotropic continuum theory of lattice defects, Prog. mater. Sci. 23, 51-262 (1978)
[6]Bakuckas, J. G.: Comparison of boundary correction factor solutions for two symmetric cracks in a straight-shank hole, Engrg. fracture mech. 68, 1095-1106 (2001)
[7]Barnett, D. M.; Asaro, R. J.: The fracture mechanics of slit-like cracks in anisotropic elastic media, J. mech. Phys. solids 20, 353-366 (1972) · Zbl 0291.73058 · doi:10.1016/0022-5096(72)90013-0
[8]Becache, E.; Nedelec, J. C.; Nishimura, N.: Regularization in 3D for anisotropic elastodynamic crack and obstacle problems, J. elasticity 31, 25-46 (1993) · Zbl 0773.73029 · doi:10.1007/BF00041622
[9]Benthem, J. P.: The quarter-infinite crack in a half space; alternative and additional solutions, Int. J. Solids struct. 16, 119-130 (1980) · Zbl 0463.73125 · doi:10.1016/0020-7683(80)90029-3
[10]Bonnet, M.: Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity, Engrg. anal. Bound. elem. 15, 93-102 (1995)
[11]Cruse, T. A.: Boundary element analysis in computational fracture mechanics, (1988)
[12]Fabrikant, V. I.: Applications of potential theory in mechanics: A selection of new results, (1989) · Zbl 0744.73016
[13]Frangi, A.; Novati, G.; Springhetti, R.: 3D fracture analysis by the symmetric Galerkin BEM, Comput. mech. 28, 220-232 (2002) · Zbl 1010.74078 · doi:10.1007/s00466-001-0283-x
[14]Gray, L. J.; Martha, L. F.; Ingraffea, A. R.: Hypersingular integrals in boundary element fracture analysis, Int. J. Numer. methods engrg. 29, 1135-1158 (1990) · Zbl 0717.73081 · doi:10.1002/nme.1620290603
[15]Gu, H.; Yew, C. H.: Finite element solution of a boundary integral equation for mode-I embedded three-dimensional fractures, Int. J. Numer. methods engrg. 26, 1525-1540 (1988) · Zbl 0636.73087 · doi:10.1002/nme.1620260705
[16]Haas, M.; Kuhn, G.: A symmetric Galerkin BEM implementation for 3D elastostatic problems with an extension to curved elements, Comput. mech. 28, 250-259 (2002) · Zbl 1062.74059 · doi:10.1007/s00466-001-0285-8
[17]Hyer, M. W.: Stress analysis of fiber-reinforced composite materials, (1998)
[18]Kassir, M. K.; Sih, G. C.: Three-dimensional crack problems: A new selection of crack solutions in three-dimensional elasticity, Three-dimensional crack problems: A new selection of crack solutions in three-dimensional elasticity 2 (1975) · Zbl 0312.73112
[19]Kolk, K.; Weber, W.; Kuhn, G.: Investigation of 3D crack propagation problems via fast BEM formulations, Comput. mech. 37, 32-40 (2005) · Zbl 1158.74513 · doi:10.1007/s00466-005-0695-0
[20]Li, S.; Mear, M. E.: Singularity-reduced integral equations for displacement discontinuities in three-dimensional linear elastic media, Int. J. Fracture 93, 87-114 (1998)
[21]Li, S.; Mear, M. E.; Xiao, L.: Symmetric weak-form integral equation method for three-dimensional fracture analysis, Comput. methods appl. Mech. engrg. 151, 435-459 (1998) · Zbl 0906.73074 · doi:10.1016/S0045-7825(97)00199-0
[22]Lothe, J.: Dislocations in anisotropic media: the interaction energy, Phil. mag. A 46, 177-180 (1982)
[23]Lutz, E.; Ingraffea, A. R.; Gray, L. J.: Use of ’simple solutions’ for boundary integral methods in elasticity and fracture analysis, Int. J. Numer. methods engrg. 35, 1737-1751 (1992) · Zbl 0767.73084 · doi:10.1002/nme.1620350902
[24]Martha, L. F.; Gray, L. J.; Ingraffea, A. R.: Three-dimensional fracture simulation with a single-domain, direct boundary element formulation, Int. J. Numer. methods engrg. 35, 1907-1921 (1992) · Zbl 0775.73322 · doi:10.1002/nme.1620350911
[25]Martin, P. A.; Rizzo, F. J.: Hypersingular integrals: how smooth must the density be?, Int. J. Numer. methods engrg. 39, 687-704 (1996) · Zbl 0846.65070 · doi:10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S
[26]Martin, P. A.; Rizzo, F. J.; Cruse, T. A.: Smoothness-relaxation strategies for singular and hypersingular integral equations, Int. J. Numer. methods engrg. 42, 885-906 (1998) · Zbl 0913.65105 · doi:10.1002/(SICI)1097-0207(19980715)42:5<885::AID-NME392>3.0.CO;2-X · doi:http://www.interscience.wiley.com
[27]Nakamura, T.; Parks, D. M.: 3-dimensional stress-field near the crack front of a thin elastic plate, J. appl. Mech. 55, 805-813 (1988)
[28]Pan, E.; Yuan, F. G.: Boundary element analysis of three-dimensional cracks in anisotropic solids, Int. J. Numer. methods engrg. 48, 211-237 (2000) · Zbl 0977.74077 · doi:10.1002/(SICI)1097-0207(20000520)48:2<211::AID-NME875>3.0.CO;2-A
[29]Rungamornrat, J.; Mear, M. E.: Weakly-singular, weak-form integral equations for cracks in three-dimensional anisotropic media, Int. J. Solids struct. 45, 1283-1301 (2008) · Zbl 1169.74549 · doi:10.1016/j.ijsolstr.2007.09.030
[30]Sáez, A.; Ariza, M. P.; Dominguez, J.: Three-dimensional fracture analysis in transversely isotropic solids, Engrg. anal. Bound. elem. 20, 287-298 (1997)
[31]Sales, M. A.; Gray, L. J.: Evaluation of the anisotropic Green’s function and its derivatives, Comput. struct. 69, 247-254 (1998) · Zbl 0939.74007 · doi:10.1016/S0045-7949(97)00115-6
[32]Ting, T. C. T.: Anisotropic elasticity: theory and applications, (1996)
[33]Wilson, R. B.; Cruse, T. A.: Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis, Int. J. Numer. methods engrg. 12, 1383-1397 (1978) · Zbl 0377.73054 · doi:10.1002/nme.1620120907
[34]L. Xiao, Symmetric weak-form integral equation method for three dimensional fracture analysis, Ph.D. Dissertation, The University of Texas at Austin, Texas, 1998.
[35]Xu, G.; Ortiz, M.: A variational boundary integral method for the analysis of 3-D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops, Int. J. Numer. methods engrg. 36, 3675-3701 (1993) · Zbl 0796.73067 · doi:10.1002/nme.1620362107
[36]Xu, G.: A variational boundary integral method for the analysis of three-dimensional cracks of arbitrary geometry in anisotropic elastic solids, J. appl. Mech. 67, 403-408 (2000) · Zbl 1110.74768 · doi:10.1115/1.1305276