zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A simplified two-level method for the steady Navier-Stokes equations. (English) Zbl 1194.76120
Summary: A simplified two-level method for solving the steady two-dimensional incompressible Navier-Stokes equations is investigated in this article. The simplified two-level method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh and one linear Stokes problem (hence, linear with positive definite symmetric part) on the fine mesh. The uniform optimal error estimates with respect to large ν for the standard Galerkin method and the two-level method are proven. Finally, some numerically tests to confirm the theoretical results of the simplified two-level method and the standard Galerkin method are provided.
MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
76M10Finite element methods (fluid mechanics)
References:
[1]Bernardi, C.; Raugel, G.: A conforming finite element method for the time-dependent Navier – Stokes equations, SIAM J. Numer anal. 22, 211-224 (1985) · Zbl 0578.65122 · doi:10.1137/0722027
[2]Ervin, V.; Layton, W.; Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier – Stokes equations, Numer. meth. Pdes 12, 333-346 (1996) · Zbl 0852.76039 · doi:10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
[3]Girault, V.; Lions, J. L.: Two-grid finite element scheme for the steady Navier – Stokes equations in polyhedra, Portugal math. 58, 25-57 (2001) · Zbl 0997.76043
[4]Girault, V.; Raviart, P. A.: Finite element methods for the Navier – Stokes equations, (1981)
[5]Girault, V.; Lions, J. L.: Two-grid finite element scheme for the transient Navier – Stokes problem, Math. model. Numer. anal. 35, 945-980 (2001) · Zbl 1032.76032 · doi:10.1051/m2an:2001145 · doi:numdam:M2AN_2001__35_5_945_0
[6]He, Yinnian: Two-level method based on finite element and Crank – Nicolson extrapolation for the time-dependent Navier – Stokes equations, SIAM J. Numer. anal. 41, 1263-1285 (2003) · Zbl 1130.76365 · doi:10.1137/S0036142901385659
[7]He, Yinnian: A two-level finite element Galerkin method for the nonstationary Navier – Stokes equations, I: Spatial discretization, J. comput. Math. 22, 21-32 (2004) · Zbl 1137.76412 · doi:http://www.global-sci.org/jcm/volumes/v22n1/pdf/221-021.pdf
[8]He, Yinnian; Miao, Huanling; Ren, Chunfeng: A two-level finite element Galerkin method for the nonstationary Navier – Stokes equations, II: Time discretization, J. comput. Math. 22, 33-54 (2004) · Zbl 1137.76413 · doi:http://www.global-sci.org/jcm/volumes/v22n1/pdf/221-033.pdf
[9]He, Yinnian; Liu, K. M.: Multi-level spectral Galerkin method for the Navier – Stokes equations I: Time discretization, Adv. comput. Math. 25, 403-433 (2006)
[10]He, Yinnian; Liu, K. M.; Sun, W. W.: Multi-level spectral Galerkin method for the Navier – Stokes equations I: Spatial discretization, Numer. math. 101, 501-522 (2005) · Zbl 1096.65099 · doi:10.1007/s00211-005-0632-3
[11]He, Yinnian; Liu, K. M.: A multi-level finite element method in space – time for the Navier – Stokes equations, Numer. meth. Pdes 21, 1052-1078 (2005) · Zbl 1081.76044 · doi:10.1002/num.20077
[12]He, Yinnian; Li, Jian; Yang, Xiaozhong: Two-level penalized finite element methods for the stationary Navier – Stokes equations, Int. J. Inform. syst. Sci. 2, 131-143 (2006) · Zbl 1099.65110
[13]He, Yinnian; Li, Kaitai: Two-level stabilized finite element methods for the steady Navier – Stokes problem, Computing 74, 337-351 (2005) · Zbl 1099.65111 · doi:10.1007/s00607-004-0118-7
[14]Hughes, T. J. R.; Liu, W. K.; Brooks, A.: Review of finite element analysis of incompressible viscous flow by the penalty function formulations, J. comput. Phys. 30, 1-60 (1979) · Zbl 0412.76023 · doi:10.1016/0021-9991(79)90086-X
[15]Layton, W.: A two-level discretization method for the Navier – Stokes equations, Comput. math. Appl. 26, 33-38 (1993) · Zbl 0773.76042 · doi:10.1016/0898-1221(93)90318-P
[16]Layton, W.; Leferink, H. W. J.: Two-level Picard and modified Picard methods for the Navier – Stokes equations, Appl. math. Comput. 69, 263-274 (1995) · Zbl 0828.76017 · doi:10.1016/0096-3003(94)00134-P
[17]Layton, W.; Leferink, H. W. J.: A multilevel mesh independence principle for the Navier – Stokes equations, SIAM J. Numer. anal. 33, 17-30 (1996) · Zbl 0844.76053 · doi:10.1137/0733002
[18]Layton, W.; Lee, H. K.; Peterson, J.: Numerical solution of the stationary Navier – Stokes equations using a multilevel finite element method, SIAM J. Sci. comput. 20, 1-12 (1998) · Zbl 0932.76033 · doi:10.1137/S1064827596306045
[19]Layton, W.; Tobiska, L.: A two-level method with backtracking for the Navier – Stokes equations, SIAM J. Numer. anal. 35, 2035-2054 (1998) · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[20]Maubach, J.: Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. comput. 16, 210-227 (1995) · Zbl 0816.65090 · doi:10.1137/0916014
[21]Olshanskii, Maxim A.: Two-level method and some a priori estimates in unsteady Navier – Stokes calculations, J. comput. Appl. math. 104, 173-191 (1999) · Zbl 0940.76079 · doi:10.1016/S0377-0427(99)00056-4
[22]Temam, R.: Navier – Stokes equations, (1984)
[23]Xu, J.: A novel two two-grid method for semilinear elliptic equations, SIAM J. Sci. comput. 15, 231-237 (1994) · Zbl 0795.65077 · doi:10.1137/0915016
[24]Xu, J.: Two-grid discretization techniques for linear and nonlinear pdes, SIAM, numer. Anal. 33, 1759-1777 (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949