zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. (English) Zbl 1194.80053
Summary: The two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the heat balance and refined integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t>0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
MSC:
80A20Heat and mass transfer, heat flow
80M25Other numerical methods (thermodynamics)
References:
[1]Antic, A.; Hill, J. M.: The double-diffusivity heat transfer model for grain stores incorporating microwave heating, Appl. math. Model. 27, 629-647 (2003) · Zbl 1043.80001 · doi:10.1016/S0307-904X(03)00072-6
[2]Bell, G. E.: A refinement of the heat balance integral method applied to a melting problem, Int. J. Heat mass transfer (1978)
[3]Bell, G. E.: Solidification of a liquid about a cylindrical pipe, Int. J. Heat mass transfer (1979)
[4]W.F. Braga, M.B.H. Mantelli, J.L.F. Azevedo, Approximate analytical solution for one-dimensional ablation problem with time-variable heat flux, in: AIAA Thermophys. Conference, June 2003.
[5]W.F. Braga, M.B.H. Mantelli, J.L.F. Azevedo, Approximate analytical solution for one-dimensional finite ablation problem with constant time heat flux, in: AIAA Thermophys. Conference, June 2004.
[6]Caldwell, J.; Kwan, Y. Y.: Numerical methods for one-dimensional Stefan problems, Commun. numer. Methods eng. 20, 535-545 (2004) · Zbl 1048.65095 · doi:10.1002/cnm.691
[7]Goodman, T. R.: The heat-balance integral and its application to problems involving a change of phase, Trans. ASME 80, 335-342 (1958)
[8]Goodman, T. R.: Application of integral methods to transient nonlinear heat transfer, Adv. heat transfer 1, 51-122 (1964) · Zbl 0126.12705 · doi:10.1016/S0065-2717(08)70097-2
[9]Gupta, R. S.; Banik, N. C.: Constrained integral method for solving moving boundary problems, Comput. methods appl. Mech. eng. 67, 211-221 (1988) · Zbl 0619.65125 · doi:10.1016/0045-7825(88)90126-0
[10]Hill, J. M.: One-dimensional Stefan problems: an introduction, (1987)
[11]Hristov, J.: The heat-balance integral method by a parabolic profile with unspecified exponent: analysis and exercises, Therm. sci. 13, No. 2, 27-48 (2009)
[12]Kutluay, S.; Bahadir, A. R.; Ozdes, A.: The numerical solution of one-phase classical Stefan problem, J. comput. Appl. math. 81 (1997) · Zbl 0885.65102 · doi:10.1016/S0377-0427(97)00034-4
[13]Langford, D.: The heat balance integral method, Int. J. Heat mass transfer 16, 2424-2428 (1973)
[14]Mennig, J.; Özişik, M. N.: Coupled integral equation approach for solving melting or solidification, Int. J. Mass transfer 28, 1481-1485 (1985) · Zbl 0576.76103 · doi:10.1016/0017-9310(85)90250-9
[15]Mitchell, S. L.; Myers, T. G.: Approximate solution methods for one-dimensional solidification from an incoming fluid, Appl. math. Comput. 202, No. 1 (2008) · Zbl 1208.76142 · doi:10.1016/j.amc.2008.02.031
[16]Mitchell, S. L.; Myers, T. G.: A heat balance integral method for one-dimensional finite ablation, AIAA J. Thermophys. 22, No. 3, 508-514 (2008)
[17]Mitchell, S. L.; Myers, T. G.: Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM rev. 52, No. 1, 57-86 (2010) · Zbl 1188.80004 · doi:10.1137/080733036
[18]Mitchell, S. L.; Vynnycky, M.: Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. math. Comput. 215 (2009) · Zbl 1177.80078 · doi:10.1016/j.amc.2009.07.054
[19]Mosally, F.; Wood, A. S.; Al-Fhaid, A.: An exponential heat balance integral method, Appl. math. Comput. 130 (2002) · Zbl 1015.80502 · doi:10.1016/S0096-3003(01)00083-2
[20]Myers, T. G.: Optimizing the exponent in the heat balance and refined integral methods, Int. commun. Heat mass transfer 36, No. 2, 143-147 (2009)
[21]Myers, T. G.: Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat mass transfer 53, 1119-1127 (2010) · Zbl 1183.80091 · doi:10.1016/j.ijheatmasstransfer.2009.10.045
[22]Myers, T. G.; Mitchell, S. L.: Application of the heat balance and refined integral methods to the Korteweg – de Vries equation, Therm. sci. 13, No. 2, 113-119 (2009)
[23]Myers, T. G.; Mitchell, S. L.; Muchatibaya, G.; Myers, M. Y.: A cubic heat balance integral method for one-dimensional melting of a finite thickness layer, Int. J. Heat mass transfer 50, 5305-5317 (2007) · Zbl 1140.80389 · doi:10.1016/j.ijheatmasstransfer.2007.06.014
[24]Myers, T. G.; Mitchell, S. L.; Muchatibaya, G.: Unsteady contact melting of a rectangular cross-section phase change material on a flat plate, Phys. fluids 20, 103101 (2008) · Zbl 1182.76548 · doi:10.1063/1.2990751
[25]Ockendon, J. R.; Howison, S. D.; Lacey, A. A.; Movchan, A.: Applied partial differential equations, (1999) · Zbl 0927.35001
[26]Sadoun, N.; Si-Ahmed, E. -K.: A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Numer. methods therm. Probl. 9, 843-854 (1995)
[27]Sadoun, N.; Si-Ahmed, E-K.; Colinet, P.: On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. math. Model. 30 (2006) · Zbl 1183.80093 · doi:10.1016/j.apm.2005.06.003
[28]Wood, A. S.: A new look at the heat balance integral method, Appl. math. Model. 25, No. 10 (2001) · Zbl 0992.80008 · doi:10.1016/S0307-904X(01)00016-6 · doi:http://www.elsevier.com/gej-ng/10/10/8/47/42/28/abstract.html