zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Superefficiency in vector optimization with nearly subconvexlike set-valued maps. (English) Zbl 1194.90093
Summary: In the framework of locally convex topological vector spaces, we establish a scalarization theorem, a Lagrange multiplier theorem and duality theorems for superefficiency in vector optimization involving nearly subconvexlike set-valued maps.
90C29Multi-objective programming; goal programming
90C48Programming in abstract spaces
90C46Optimality conditions, duality
[1]Kuhn, H., Tucker, A.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–491. University of California Press, Berkeley (1951)
[2]Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968) · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[3]Borwein, J.M.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977) · Zbl 0369.90096 · doi:10.1137/0315004
[4]Hartley, R.: On cone efficiency, cone convexity, and cone compactness. SIAM J. Appl. Math. 34, 211–222 (1978) · Zbl 0379.90005 · doi:10.1137/0134018
[5]Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979) · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[6]Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982) · Zbl 0452.90073 · doi:10.1007/BF00934353
[7]Borwein, J.M., Zhuang, D.: Superefficiency in vector optimization. Trans. Am. Math. Soc. 338, 105–122 (1993) · Zbl 0796.90045 · doi:10.2307/2154446
[8]Zheng, X.Y.: Proper efficiency in locally convex topological vector spaces. J. Optim. Theory Appl. 94, 469–486 (1997) · Zbl 0889.90141 · doi:10.1023/A:1022648115446
[9]Corley, H.W.: Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54, 489–500 (1987) · Zbl 0595.90085 · doi:10.1007/BF00940198
[10]Lin, L.J.: Optimization of set-valued functions. J. Math. Anal. Appl. 186, 30–51 (1994) · Zbl 0987.49011 · doi:10.1006/jmaa.1994.1284
[11]Gong, X.H.: Connectedness of efficient solution sets for set-valued maps in normed spaces. J. Optim. Theory Appl. 83, 83–96 (1994) · Zbl 0845.90104 · doi:10.1007/BF02191763
[12]Li, Z.F., Chen, G.Y.: Lagrange multipliers, saddle points and duality in vector optimization of set-valued maps. J. Math. Anal. Appl. 215, 297–316 (1997) · Zbl 0893.90150 · doi:10.1006/jmaa.1997.5568
[13]Song, W.: Lagrangian duality for minimization of nonconvex multifunctions. J. Optim. Theory Appl. 93, 167–182 (1997) · Zbl 0901.90161 · doi:10.1023/A:1022658019642
[14]Chen, G.Y., Jahn, J.: Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48, 1187–1200 (1998)
[15]Li, Z.F.: Benson proper efficiency in vector optimization of set-valued maps. J. Optim. Theory Appl. 98, 623–649 (1998) · Zbl 0913.90235 · doi:10.1023/A:1022676013609
[16]Rong, W.D., Wu, Y.N.: Characterizations of superefficiency in cone-convexlike vector optimization with set-valued maps. Math. Methods Oper. Res. 48, 247–258 (1998) · Zbl 0930.90078 · doi:10.1007/s001860050026
[17]Mehra, A.: Superefficiency in vector optimization with nearly convexlike set-valued maps. J. Math. Anal. Appl. 276, 815–832 (2002) · Zbl 1106.90375 · doi:10.1016/S0022-247X(02)00452-3
[18]Cristescu, R.: Ordered Vector Spaces and Linear Operators. Abacus, Kent (1976)
[19]Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1971)
[20]Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001) · Zbl 1012.90061 · doi:10.1023/A:1017535631418
[21]Sach, P.H.: Nearly subconvexlike set-valued maps and vector optimization problems. J. Optim. Theory Appl. 119, 335–356 (2003) · Zbl 1055.90066 · doi:10.1023/B:JOTA.0000005449.20614.41
[22]Cheng, Y.H., Fu, W.T.: Strong efficiency in a locally convex space. Math. Methods Oper. Res. 50, 373–384 (1999) · Zbl 0947.90104 · doi:10.1007/s001860050076
[23]Zhuang, D.: Density results for proper efficiencies. SIAM J. Control Optim. 32, 51–58 (1994) · Zbl 0798.49028 · doi:10.1137/S0363012989171518
[24]Gong, X.H., Dong, H.B., Wang, S.Y.: Optimality conditions for proper efficient solutions of vector set-valued optimization. J. Math. Anal. Appl. 284, 332–350 (2003) · Zbl 1160.90649 · doi:10.1016/S0022-247X(03)00360-3