zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment. (English) Zbl 1194.92075
Summary: A new Michaelis-Menten type chemostat model with time delay and pulsed input nutrient concentration in a polluted environment is considered. We obtain a ‘microorganism-extinction’ semi-trivial periodic solution and establish sufficient conditions for the global attractivity of the semi-trivial periodic solution. By use of new computational techniques for impulsive differential equations with delay, we prove and support with numerical calculations that the system is permanent. Our results show that time delays and the polluted environment can lead the microorganism species to be extinct.
MSC:
92D40Ecology
34K45Functional-differential equations with impulses
92-08Computational methods (appl. to natural sciences)
References:
[1]Novick A., Szilard L.: Description of the chemostat. Science 112, 715–716 (1950) · doi:10.1126/science.112.2920.715
[2]Dykhuizen D.E., Hartl D.L.: Selection in chemostats. Microbiol. Rev. 47, 150–168 (1983)
[3]Hsu S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9(2), 115–132 (1980) · Zbl 0431.92027 · doi:10.1007/BF00275917
[4]Butler G.J., Hsu S.B., Waltman P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45(3), 435–449 (1985) · Zbl 0584.92027 · doi:10.1137/0145025
[5]Pilyugin S.S., Waltman P.: Competition in the unstirred chemostat with periodic input and washout. SIAM J. Appl. Math. 59(4), 1157–1177 (1999) · Zbl 0934.34042 · doi:10.1137/S0036139997326181
[6]Smith H.L., Waltman P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1995)
[7]Monod J.: La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79(19), 390–401 (1950)
[8]Hsu S.B., Li C.C.: A discrete-delayed model with plasmid-bearing, plasmid-free competition in a chemostat. Discrete Contin. Dyn. Syst. Ser. B 5, 699–718 (2005) · Zbl 1090.34063 · doi:10.3934/dcdsb.2005.5.699
[9]Hsu S.B., Hubbell S.P., Waltman P.: A mathematical theory for single-nutrient competition in the continuous cultures of micro-organisms. SIAM J. Appl. Math. 32(2), 366–383 (1977) · Zbl 0354.92033 · doi:10.1137/0132030
[10]Hsu S.B., Tzeng Y.H.: Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Math. Biosci. 179, 183–206 (2002) · Zbl 1020.92029 · doi:10.1016/S0025-5564(02)00105-0
[11]Wolkowicz G.S.K., Xia H.Y.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57(4), 1019–1043 (1997) · Zbl 0902.92023 · doi:10.1137/S0036139995287314
[12]Caperon J.: Time lag in population growth response of Isochrysis galbana to a variable nitrate environment. Ecology 50(2), 188–192 (1969) · doi:10.2307/1934845
[13]Freedman H.I., So J.W-H., Waltman P.: Coexistence in a model of competition in the chemostat incorporating discrete delays. SIAM J. Appl. Math. 49(3), 859–870 (1989) · Zbl 0676.92013 · doi:10.1137/0149050
[14]Ruan S.G., Wolkowicz G.S.K.: Bifurcation analysis of a chemostat model with a distributed delay. J. Math. Anal. Appl. 204(3), 786–812 (1996) · Zbl 0879.92031 · doi:10.1006/jmaa.1996.0468
[15]Xia H.Y., Wolkowicz G.S.K., Wang L.: Transient oscillations induced by delayed growth response in the chemostat. J. Math. Biol. 50(5), 489–530 (2005) · Zbl 1062.92079 · doi:10.1007/s00285-004-0311-5
[16]Hale J.K., Somolinas A.S.: Competition for fluctuating nutrient. J. Math. Biol. 18(3), 255–280 (1983) · Zbl 0525.92024 · doi:10.1007/BF00276091
[17]Wolkowicz G.S.K., Zhao X.Q.: N-species competition in a periodic chemostat. Differential Integral Equations. 11(3), 465–491 (1998)
[18]Lakshmikantham V., Bainov D., Simeonov P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
[19]Haddad W.M., Chellaboina V., Nersesov S.G.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)
[20]Zavalishchin S.T., Sesekin A.N.: Dynamic Impulse Systems. Theory and Applications. Mathematics and Its Applications, vol 394. Kluwer Academic Publishers, Dordrecht (1997)
[21]W.B. Wang, J.H. Shen, J.J.Nieto, Permanence and periodic solution of predator prey system with Holling type functional response and impulses. Discrete Dyn. Nat. Soc. Art. ID 81756, 15 pp (2007). doi: 10.1155/2007/81756
[22]Dai B., Su H., Hu D.: Periodic solution of a delayed ratio-dependent predator–prey model with monotonic functional response and impulse. Nonlinear Anal. 70(1), 126–134 (2009). doi: 10.1016/j.na.2007.11.036 · Zbl 1166.34043 · doi:10.1016/j.na.2007.11.036
[23]Nieto J.J., Rodriguez-Lopez R.: New comparison results for impulsive integro-differential equations and applications. J. Math. Anal. Appl. 328, 1343–1368 (2007) · Zbl 1113.45007 · doi:10.1016/j.jmaa.2006.06.029
[24]Liu B., Teng Z.D., Liu W.B.: Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos Solitons Fractals 31(2), 356–370 (2007) · Zbl 1145.34029 · doi:10.1016/j.chaos.2005.09.059
[25]Liu B., Zhang Y.J., Chen L.S.: The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management. Nonlinear Anal. Real World Appl. 6(2), 227–243 (2005) · Zbl 1082.34039 · doi:10.1016/j.nonrwa.2004.08.001
[26]J.H. Shen, J.L. Li: Existence and global attractivity of positive periodic solutions for impulsive predator–prey model with dispersion and time delays. Nonlinear Anal. Real World Appl. 10(1), 227–243 (2009). doi: 110.1016/j.nonrwa · Zbl 1154.34372 · doi:10.1016/j.nonrwa.2007.08.026
[27]Chu J., Nieto J.J.: Impulsive periodic solutions of first order singular differential equations. Bull. London Math. Soc. 40, 143–150 (2008) · Zbl 1144.34016 · doi:10.1112/blms/bdm110
[28]Georgescu P., Morosanu G.: Pest regulation by means of impulsive controls. Appl. Math. Comput. 190, 790–803 (2007) · Zbl 1117.93006 · doi:10.1016/j.amc.2007.01.079
[29]Jianng G., Lu Q., Qian L.: Chaos and its control in an impulsive differential system. Chaos Solitons Fractals 34, 1135–1147 (2007) · Zbl 1142.93424 · doi:10.1016/j.chaos.2006.04.024
[30]Meng X., Jiao J., Chen L.: The dynamics of an age structured predator–prey model with disturbing pulse and time delays. Nonlinear Anal. Real World Appl. 9, 547–561 (2008) · Zbl 1142.34054 · doi:10.1016/j.nonrwa.2006.12.001
[31]Meng X., Chen L.: Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination. Taiwanese J. Math. 12(5), 1107–1122 (2008)
[32]Zhou J., Xiang L., Liu Z.: Synchronization in complex delayed dynamical networks with impulsive effects. Physica A Stat. Mech. Appl. 384, 684–692 (2007) · doi:10.1016/j.physa.2007.05.060
[33]Sun S.L., Chen L.S.: Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. J. Math. Chem. 42(4), 837–848 (2007) · Zbl 1217.34125 · doi:10.1007/s10910-006-9144-3
[34]Sun M.J., Chen L.S.: Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input. J. Math. Chem. 43(2), 447–456 (2008) · Zbl 1195.92030 · doi:10.1007/s10910-006-9207-5
[35]Pang G.P., Liang Y.L., Wang F.Y.: Analysis of Monod type food chain chemostat with k-times periodically pulsed input. J. Math. Chem. 43(4), 1371–1388 (2008). doi: 10.1007/s10910-007-9258-2 · Zbl 1217.34065 · doi:10.1007/s10910-007-9258-2
[36]Song X., Zhao Z., Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input. Discrete Dyn. Nat. Soc. Art. ID 38310, 14 pp (2006). doi: 10.1155/DDNS/2006/38310
[37]Wang F., Hao C., Chen L.: Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout. Chaos Solitons Fractals 32, 181–194 (2007) · Zbl 1130.92058 · doi:10.1016/j.chaos.2005.10.083
[38]Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)