×

Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. (English) Zbl 1194.93065

Summary: An Observer-based Fuzzy Neural Sliding Mode Control (OFNSMC) scheme for interconnected unknown chaotic systems is developed. The OFNSMC system is composed of a computation controller and a robust controller. The computation controller containing a Self-structuring Fuzzy Neural Network (SFNN) identifier is the principle controller, and the robust controller is designed to achieve \(L_{2}\) tracking performance. The SFNN identifier uses the structure and parameter learning phases to perform the estimation of the interconnected unknown chaotic system dynamics. The structure learning phase consists of the growing of membership functions, the splitting of fuzzy rules and the pruning of fuzzy rules, and thus the SFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the network structure of fuzzy neural networks. The total states of the interconnected chaotic systems are not assumed to be available for measurement. Also, the unknown nonlinearities of the interconnected chaotic systems are not restricted to the systems output only. To demonstrate the effectiveness of the proposed method, simulation results are illustrated in this paper.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93B12 Variable structure systems
93C42 Fuzzy control/observation systems
34H10 Chaos control for problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stark, J.; Hardy, K., Chaos: Useful at last?, Science, 301, 1192-1193 (2003)
[2] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[3] Jiang, G. P.; Zheng, W. X., A simple method of chaos control for a class of chaotic discrete-time systems, Chaos Solitons Fract., 23, 843-849 (2005) · Zbl 1061.93505
[4] Morgul, O., On the stability of delayed feedback controllers for discrete time systems, Phys. Lett. A, 335, 31-42 (2005) · Zbl 1123.93317
[5] Nazzal, J. M.; Natsheh, A. N., Chaos control using sliding mode theory, Chaos Solitons Fract., 33, 695-702 (2007)
[6] Suykens, J. A.K.; Curran, P. F.; Vandewalle, J.; Chua, L. O., Robust nonlinear \(H^\infty\) synchronization of chaotic Lur’e systems, IEEE Trans. Circuits Syst. I, 44, 891-904 (1997)
[7] Boccaletti, S.; Grebogi, C.; Lai, Y. C.; Mancini, H.; Maza, D., The control of chaos: theory and applications, Phys. Rep., 329, 103-197 (2000)
[8] G. Chen, X. Yu (Eds.), Chaos Control, Springer-Verlag, Berlin, Heidelberg, 2003.; G. Chen, X. Yu (Eds.), Chaos Control, Springer-Verlag, Berlin, Heidelberg, 2003.
[9] E. Kayacan, O. Kaynak, An adaptive grey fuzzy PID controller with variable prediction horizon, in: Proc. of SCIS & ISIS 2006, Tokyo, Japan, pp. 760-765.; E. Kayacan, O. Kaynak, An adaptive grey fuzzy PID controller with variable prediction horizon, in: Proc. of SCIS & ISIS 2006, Tokyo, Japan, pp. 760-765.
[10] Brandt, M. E.; Ademoglu, A.; Lai, D.; Chen, G., Auto-regressive self-tuning feedback control of a noisy Hénon map, Phys. Rev. E, 54, 6201-6206 (1996)
[11] Zhang, H.; Qin, H.; Chen, G., Adaptive control of chaotic systems with uncertainties, Int. J. Bifur. Chaos, 8, 2041-2046 (1998) · Zbl 0941.93524
[12] Lee, H. J.; Park, J. B.; Chen, G., Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE Trans. Fuzzy Syst., 9, 369-379 (2001)
[13] Chang, W.; Park, J. B.; Joo, Y. H.; Chen, G., Static output-feedback fuzzy controller for Chen’s chaotic system with uncertainties, Inf. Sci., 151, 227-244 (2003) · Zbl 1017.93053
[14] Liu, Y. J.; Wang, W., Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems, Inf. Sci., 177, 3901-3917 (2007) · Zbl 1121.93037
[15] Tong, S. C.; Li, Y. M., Observer-based fuzzy adaptive control for strict-feedback nonlinear systems, Fuzzy Sets Syst., 160, 1749-1764 (2009) · Zbl 1175.93135
[16] Liu, Y. J.; Wang, W.; Tong, S. C.; Liu, Y. S., Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters, IEEE Trans. Syst. Man Cybern. A, 40, 170-184 (2010)
[17] Lin, C. T.; Lee, C. S.G., Neural Fuzzy Systems: A Neuron-Fuzzy Synergism to Intelligent Systems (1996), Prentice-Hall
[18] Spooner, J. T.; Maggiore, M.; Ordonez, R.; Passino, K. M., Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques (2002), John Wiley and Sons
[19] Lin, F. J.; Hwang, W. J.; Wai, R. J., A supervisory fuzzy neural network control system for tracking periodic inputs, IEEE Trans. Fuzzy Syst., 7, 41-52 (1999)
[20] Wang, C. H.; Liu, H. L.; Lin, C. T., Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems, IEEE Trans. Fuzzy Syst., 10, 39-49 (2002)
[21] Lin, C. M.; Hsu, C. F., Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings, IEEE Trans. Fuzzy Syst., 12, 733-742 (2004)
[22] Hsu, C. F.; Lin, C. M., Fuzzy-identification-based adaptive controller design via backstepping approach, Fuzzy Sets Syst., 151, 43-57 (2005) · Zbl 1142.93357
[23] Leu, Y. G.; Wang, W. Y.; Lee, T. T., Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems, IEEE Trans. Neural Networks, 16, 853-861 (2005)
[24] S.A. Mohseni, S.M. Mohseni, Fuzzy neural networks controller for a chaotic nonlinear gyro using sliding-mode surfaces, in: 2008, IEEE Internat. Symp. on Industrial Electronics, June 30-July 2, 2008, pp. 1150-1153.; S.A. Mohseni, S.M. Mohseni, Fuzzy neural networks controller for a chaotic nonlinear gyro using sliding-mode surfaces, in: 2008, IEEE Internat. Symp. on Industrial Electronics, June 30-July 2, 2008, pp. 1150-1153.
[25] N.G. Shakev, A.V. Topalov, O. Kaynak, A neural-fuzzy adaptive sliding mode controller: application to second-order chaotic system, in: Intelligent Systems, 2008, IS’08. 4th Internat. IEEE Conf., September 6-8, 2008, pp. 14-19.; N.G. Shakev, A.V. Topalov, O. Kaynak, A neural-fuzzy adaptive sliding mode controller: application to second-order chaotic system, in: Intelligent Systems, 2008, IS’08. 4th Internat. IEEE Conf., September 6-8, 2008, pp. 14-19.
[26] Da, F., Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems, IEEE Trans. Neural Networks, 11, 1471-1480 (2000)
[27] Hernandez, M.; Tang, Y., Adaptive output-feedback decentralized control of a class of second order nonlinear systems using recurrent fuzzy neural networks, Neurocomputing, 73, 461-467 (2009)
[28] Huang, G. B.; Saratchandran, P.; Sundararajan, N., An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks, IEEE Trans. Syst. Man Cybern. B, 34, 2284-2292 (2004)
[29] Li, C.; Lee, C. Y.; Cheng, K. H., Pseudo-error-based self-organizing neuron-fuzzy system, IEEE Trans. Fuzzy Syst., 12, 812-819 (2004)
[30] Lin, C. T.; Cheng, W. C.; Liang, S. F., An on-line ICA-mixture-mode-based self-constructing fuzzy neural network, IEEE Trans. Circuits Syst. I, 52, 207-221 (2005) · Zbl 1374.68399
[31] Deng, X.; Wang, X., Incremental learning of dynamic fuzzy neural networks for accurate system modeling, Fuzzy Sets Syst., 160, 972-987 (2009) · Zbl 1182.68164
[32] Lin, F. J.; Lin, C. H.; Shen, P. H., Self-constructing fuzzy neural network aped controller for permanent-magnet synchronous motor drive, IEEE Trans. Fuzzy Syst., 9, 751-759 (2001)
[33] Wu, S.; Er, M. J.; Gao, Y., A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst., 9, 578-594 (2001)
[34] Gao, Y.; Er, M. J., Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems, IEEE Trans. Fuzzy Syst., 11, 462-477 (2003)
[35] Lin, F. J.; Lin, C. H., A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller, IEEE Trans. Energy Conver., 19, 66-72 (2004)
[36] Hsu, C. F., Self-organizing adaptive fuzzy neural control for a class of nonlinear systems, IEEE Trans. Neural Networks, 18, 1232-1241 (2007)
[37] Lin, P. Z.; Hsu, C. F.; Lee, T. T.; Wang, C. H., Robust fuzzy-neural sliding-mode controller design via network structure adaptation, IET Control Theory Appl., 2, 1054-1065 (2008)
[38] Brauer, F.; Nohel, J. A., The Qualitative Theory of Ordinary Differential Equations: An Introduction (1969), Benjamin · Zbl 0179.13202
[39] Wang, L.; Langari, R., Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques, IEEE Trans. Fuzzy Syst., 3, 454-458 (1995)
[40] Juang, C. F.; Lin, C. T., An on-line self constructing neural fuzzy inference network and its applications, IEEE Trans. Fuzzy Syst., 6, 12-32 (1998)
[41] Park, J. H.; Huh, S. H.; Kim, S. H.; Seo, S. J.; Park, G. T., Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks, IEEE Trans. Neural Networks, 16, 414-422 (2005)
[42] Lee, S.; Kil, R. M., A Gaussian potential function network with hierarchically self-organizing learning, Neural Networks, 4, 207-224 (1991)
[43] Haykin, S., Neural Networks: A Comprehensive Foundation (1999), Prentice-Hall · Zbl 0934.68076
[44] Hsu, C. F.; Lin, C. M.; Lee, T. T., Wavelet adaptive backstepping control for a class of nonlinear system, IEEE Trans. Neural Networks, 17, 1175-1183 (2006)
[45] Peng, Y. F.; Lin, C. M., Intelligent motion control of linear ultrasonic motor with \(H^\infty\) tracking performance, IET Control Theory Appl., 1, 9-17 (2007)
[46] Kung, C. C.; Chen, T. H., \(H^\infty\) tracking-based adaptive fuzzy sliding mode controller design for nonlinear systems, IET Control Theory Appl., 1, 82-89 (2007)
[47] Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0752.34039
[48] Loria, A.; Panteley, E.; Nijmeijer, H., Control of the chaotic Duffing with uncertainty in all parameter, IEEE Trans. Circuits Syst. I, 45, 1252-1255 (1998) · Zbl 0957.93042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.