zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. (English) Zbl 1194.93105
Summary: This paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems.
MSC:
93C40Adaptive control systems
93B52Feedback control
References:
[1]Chen, G., Yu, X.: Chaos Control: Theory and Applications. Springer, Berlin (2003)
[2]Yamada, T., Fujisaka, H.: Stability theory of synchronized motion in coupled-oscillator systems. Progr. Theor. Phys. 70, 1240–1248 (1983) · Zbl 1171.70307 · doi:10.1143/PTP.70.1240
[3]Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[4]Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[5]Aziz-Alaoui, M.A.: Synchronization of chaos. In: Encyclopedia of Mathematical Physics, pp. 213–226 (2006)
[6]Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008) · doi:10.1016/j.chaos.2006.10.054
[7]Ge, Z.M., Ou, C.Y.: Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 34(2), 262–291 (2007) · Zbl 1132.37324 · doi:10.1016/j.chaos.2005.11.059
[8]Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42, 485–490 (1995) · doi:10.1109/81.404062
[9]Li, C., Chen, G.: Chaos and hyperchaos in fractional order Rössler equations. Physica A 341, 55–61 (2004) · doi:10.1016/j.physa.2004.04.113
[10]Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[11]Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22(3), 549–554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[12]Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27(3), 685–688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[13]Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003) · doi:10.1103/PhysRevLett.91.034101
[14]Arneodo, A., Coullet, P., Spiegel, E., Tresser, C.: Asymptotic chaos. Physica D 14(3), 327–347 (1985) · Zbl 0595.58030 · doi:10.1016/0167-2789(85)90093-4
[15]Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodos systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[16]Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005) · doi:10.1016/j.physa.2005.01.021
[17]Sheu, L.-J., Chen, H.-K., Chen, J.-H., Tam, L.-M., Chen, W.-C., Lin, K.-T., Kang, Y.: Chaos in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals 36(1), 98–103 (2008) · Zbl 1152.37319 · doi:10.1016/j.chaos.2006.06.013
[18]Tam, L.M., Si Tou, W.M.: Parametric study of the fractional-order Chen-Lee system. Chaos Solitons Fractals 37(3), 817–826 (2008) · doi:10.1016/j.chaos.2006.09.067
[19]Li, C., Zhou, T.: Synchronization in fractional-order differential systems. Physica D 212(1–2), 111–125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[20]Gao, X., Yu, J.: Synchronization of two coupled fractional-order chaotic oscillators. Chaos Solitons Fractals 26(1), 519–525 (2005) · Zbl 1066.92041 · doi:10.1016/j.chaos.2004.05.047
[21]Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27(2), 519–525 (2006) · Zbl 1086.94007 · doi:10.1016/j.chaos.2005.04.032
[22]Zhou, S., Li, H., Zhu, Z., Li, C.: Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36(4), 973–984 (2008) · Zbl 1139.93320 · doi:10.1016/j.chaos.2006.07.033
[23]Peng, G.: Synchronization of fractional order chaotic systems. Phys. Lett. A 363(5–6), 426–432 (2007) · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053
[24]Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaos in a new system with fractional order. Chaos Solitons Fractals 31(5), 1203–1212 (2007) · doi:10.1016/j.chaos.2005.10.073
[25]Yan, J., Li, C.: On chaos synchronization of fractional differential equations. Chaos Solitons Fractals 32(2), 725–735 (2007) · Zbl 1132.37308 · doi:10.1016/j.chaos.2005.11.062
[26]Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007) · doi:10.1016/j.chaos.2005.11.020
[27]Zhu, H., Zhou, S., He, Z.: Chaos synchronization of the fractional-order Chen’s system. Chaos Solitons Fractals 41(5), 2733–2740 (2009) · Zbl 1198.93206 · doi:10.1016/j.chaos.2008.10.005
[28]Wang, J., Xiong, X., Zhang, Y.: Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A 370(2), 279–285 (2006) · doi:10.1016/j.physa.2006.03.021
[29]Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360(2), 171–185 (2006) · doi:10.1016/j.physa.2005.06.078
[30]Wu, X., Li, J., Chen, G.J.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345(4), 392–401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[31]Yu, Y., Li, H.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387(5–6), 1393–1403 (2008) · doi:10.1016/j.physa.2007.10.052
[32]Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 39(4), 1595–1603 (2009) · Zbl 1197.94233 · doi:10.1016/j.chaos.2007.06.082
[33]Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
[34]Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
[35]Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)
[36]Gorenflo, R., Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus. Springer, New York (1997)
[37]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part II. J. R. Astron. Soc. 13, 529–539 (1967)
[38]Matignon, D.: Stability results of fractional differential equations with applications to control processing. In: Proceeding of IMACS, IEEE-SMC, pp. 963–968. Lille, France (1996)
[39]Deng, W., Li, C., Lü, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[40]Ahmed, E., El-Sayed, A.M., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325(1), 542–553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[41]Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009) · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[42]Chen, C., Ueta, T.: Yet another chaotic attractor. I. J. Bifurc. Chaos 9(7), 1465–1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[43]Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Physica D 237, 2628–2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[44]Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976) · doi:10.1016/0375-9601(76)90101-8