zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New delay-dependent stability criteria for T-S fuzzy systems with time-varying delay. (English) Zbl 1194.93117
Summary: This paper is concerned with the stability problem of uncertain T-S fuzzy systems with time-varying delay by employing a further improved free-weighting matrix approach. By taking the relationship among the time-varying delay, its upper bound and their difference into account, some less conservative LMI-based delay-dependent stability criteria are obtained without ignoring any useful terms in the derivative of Lyapunov-Krasovskii functional. Finally, two numerical examples are given to demonstrate the effectiveness and the merits of the proposed methods.
MSC:
93C42Fuzzy control systems
34H05ODE in connection with control problems
93D99Stability of control systems
93C05Linear control systems
References:
[1]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE transactions systems man cybernetics 15, 116-132 (1985) · Zbl 0576.93021
[2]Tanaka, K.; Sano, M.: A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer, IEEE transactions on fuzzy systems 2, 119-134 (1994)
[3]Chen, B. S.; Tseng, C. S.; Uang, H. J.: Mixed H2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach, IEEE transactions on fuzzy systems 8, 249-265 (2000)
[4]Wang, H. O.; Tanaka, K.; Griffin, M. F.: An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE transactions on fuzzy systems 4, 14-23 (1996)
[5]Teixeira, M. C.; Zak, S. H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE transactions on fuzzy systems 7, 133-144 (1999)
[6]Ying, H.: The Takagi – sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers, Automatica 34, 157-167 (1998) · Zbl 0989.93053 · doi:10.1016/S0005-1098(97)00173-8
[7]Akar, M.; Ozguner, U.: Decentralized techniques for the analysis and control of Takagi – sugeno fuzzy systems, IEEE transactions on fuzzy systems 8, 691-704 (2000)
[8]Cao, Y. Y.; Frank, P. M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi – sugeno fuzzy models, Fuzzy sets and systems 124, 213-229 (2001) · Zbl 1002.93051 · doi:10.1016/S0165-0114(00)00120-2
[9]W.J. Chang, W. Chang, Fuzzy control of continuous time-delay affine T – S fuzzy systems, in: Proc. 2004 IEEE Internat. Conf. on Networking, Sensing and Control Taipei, Taiwan, 2004, pp. 618 – 623.
[10]Ding, B. C.; Sun, H. X.; Yang, P.: Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi – sugeno’s form, Automatica 42, 503-508 (2006) · Zbl 1123.93061 · doi:10.1016/j.automatica.2005.11.005
[11]Tian, E. G.; Peng, C.: Delay-dependent stability analysis and synthesis of uncertain T – S fuzzy systems with time-varying delay, Fuzzy sets and systems 157, 544-559 (2006) · Zbl 1082.93031 · doi:10.1016/j.fss.2005.06.022
[12]Guan, X. P.; Chen, C. L.: Delay-dependent guaranteed cost control for T – S fuzzy systems with time delays, IEEE transactions on fuzzy systems 12, 236-249 (2004) · Zbl 1142.93363 · doi:10.1109/TFUZZ.2004.825085
[13]Yoneyama, J.: Robust control analysis and synthesis for uncertain fuzzy systems with time-delay, IEEE international conference on fuzzy systems 1, 396-401 (2003)
[14]Wu, H. N.; Li, H. X.: New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay, IEEE transactions on fuzzy systems 15, 482-493 (2007)
[15]Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y.; Chen, B.: Observer-based H fuzzy control design for T – S fuzzy systems with state delays, Automatica 44, 868-874 (2008)
[16]Liu, X. D.; Zhang, Q. L.: New approaches to H controller designs based on fuzzy observers for T – S fuzzy systems via LMI, Automatica 39, 1571-1582 (2003) · Zbl 1029.93042 · doi:10.1016/S0005-1098(03)00172-9
[17]Luo, Y. B.; Cao, Y. Y.; Sun, Y. X.: Robust stability of uncertain Takagi – sugeno fuzzy systems with time-varying input-delay, Acta automatica sinica 34, 87-92 (2008)
[18]Chen, B.; Liu, X. P.; Tong, S. C.; Lin, C.: Observer-based stabilization of T – S fuzzy systems with input delay, IEEE transactions on fuzzy systems 16, 652-663 (2008)
[19]Lin, C.; Wang, Q. G.; Lee, T. H.; Chen, B.: H filter design for nonlinear systems with time-delay through T – S fuzzy model approach, IEEE transactions on fuzzy systems 16, 739-746 (2008)
[20]Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, International journal of control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[21]Li, C. G.; Wang, H. J.; Liao, X. F.: Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays, IEE Proceedings — control theory and applications 151, 417-421 (2004)
[22]He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems & control letters 51, 57-65 (2004)
[23]Chen, B.; Liu, X. P.; Tong, S. C.: New delay-dependent stabilization conditions of T – S systems with constant delay, Fuzzy sets and systems 158, 2209-2224 (2007) · Zbl 1122.93048 · doi:10.1016/j.fss.2007.02.018
[24]Lien, C. H.: Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay, Chaos, solitons and fractals 28, 422-427 (2006) · Zbl 1091.93022 · doi:10.1016/j.chaos.2005.05.039
[25]Lien, C. H.; Yu, K. W.; Chen, W. D.; Wan, Z. L.; Chung, Y. J.: Stability criteria for uncertain Takagi – sugeno fuzzy systems with interval time-varying delay, IET control theory and applications 1, 746-769 (2007)
[26]Boyd, S.; Ghaoui, L. E.; Feron, E.: Linear matrix inequality in system and control theory, (1994)
[27]Petersen, I. R.; Hollot, C. V.: A Riccati equation approach to the stabilization of uncertain linear systems, Automatica 22, 397-411 (1986) · Zbl 0602.93055 · doi:10.1016/0005-1098(86)90045-2
[28]Peng, C.; Tian, Y. C.; Tian, E. G.: Improved delay-dependent robust stabilization conditions of uncertain T – S fuzzy systems with time-varying delay, Fuzzy sets and systems 159, 2713-2729 (2008) · Zbl 1170.93344 · doi:10.1016/j.fss.2008.03.009
[29]Peng, C.; Tian, Y. C.: Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, Journal of computational and applied mathematics 214, 480-494 (2008) · Zbl 1136.93437 · doi:10.1016/j.cam.2007.03.009