zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances. (English) Zbl 1194.93134
Summary: This paper is concerned with the state feedback control problem for a class of discrete-time stochastic systems involving sector nonlinearities and mixed time-delays. The mixed time-delays comprise both discrete and distributed delays, and the sector nonlinearities appear in the system states and all delayed states. The distributed time-delays in the discrete-time domain are first defined and then a special matrix inequality is developed to handle the distributed time-delays within an algebraic framework. An effective linear matrix inequality (LMI) approach is proposed to design the state feedback controllers such that, for all admissible nonlinearities and time-delays, the overall closed-loop system is asymptotically stable in the mean square sense. Sufficient conditions are established for the nonlinear stochastic time-delay systems to be asymptotically stable in the mean square sense, and then the explicit expression of the desired controller gains is derived. A numerical example is provided to show the usefulness and effectiveness of the proposed design method.
MSC:
93C55Discrete-time control systems
93E15Stochastic stability