zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive control for a class of neural networks with bounded and unbounded delays. (English) Zbl 1194.93192
Summary: We study the problem of global exponential stability for a class of impulsive neural networks with bounded and unbounded delays and fixed moments of impulsive effect. We establish stability criteria by employing Lyapunov functions and Razumikhin technique. An illustrative example is given to demonstrate the effectiveness of the obtained results.
MSC:
93D20Asymptotic stability of control systems
92B20General theory of neural networks (mathematical biology)
34H05ODE in connection with control problems
References:
[1]Akca, H.; Alassar, R.; Covachev, V.; Covacheva, Z.; Al-Zahrani, E.: Continuous-time additive Hopfield-type neural networks with impulses, Journal of mathematical analysis and applications 290, 436-451 (2004) · Zbl 1057.68083 · doi:10.1016/j.jmaa.2003.10.005
[2]Ahmad, S.; Stamova, I. M.: Global exponential stability for impulsive cellular neural networks with time-varying delays, Nonlinear analysis: TMA 69, 786-795 (2008) · Zbl 1151.34061 · doi:10.1016/j.na.2008.02.067
[3]Arbib, M. A.: Branins machines and mathematics, (1987)
[4]Arik, S.; Tavanoglu, V.: Equilibrium analysis of delayed cnns, IEEE transactions on circuits and systems - I 45, 168-171 (1998)
[5]Arik, S.; Tavanoglu, V.: On the global asymptotic stability of delayed cellular neural networks, IEEE transactions on circuits and systems - I 47, 571-574 (2000) · Zbl 0997.90095 · doi:10.1109/81.841859
[6]Cao, J.: On stability of delayed cellular neural networks, Physics letters A 261, 303-308 (1999) · Zbl 0935.68086 · doi:10.1016/S0375-9601(99)00552-6
[7]Chen, Y.: Global stability of neural networks with distributed delays, Neural networks 15, 867-871 (2002)
[8]Chua, L. O.: CNN: A paradigm for complexity, (1998)
[9]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE transactions on circuits and systems, CAS 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[10]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE transactions on circuits and systems, CAS 35, 1273-1290 (1988)
[11]Feng, C.; Plamondon, R.: On the stability analysis of delayed neural networks systems, Neural networks 14, 1181-1188 (2001)
[12]Gopalsamy, K.; He, X.: Stability in asymmetric Hopfield nets with transmission delays, Physica D 76, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[13]Haykin, S.: Neural networks: A comprehensive foundation, (1998)
[14]Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings national Academy of science USA 81, 3088-3092 (1984)
[15]Huang, H.; Cao, J.: On global asymptotic stability of recurrent neural networks with time-varying delays, Applied mathematics and computation 142, 143-154 (2003) · Zbl 1035.34081 · doi:10.1016/S0096-3003(02)00289-8
[16]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[17]Marcus, C. M.; Westervelt, R. M.: Stability of analog neural networks with delay, Physical review A 39, 347-359 (1989)
[18]Razumikhin, B. S.: Stability of systems with retardation, (1988)
[19]Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general cellular neural networks, IEEE transactions on circuits and systems - I 39, 487-490 (1992) · Zbl 0775.92010 · doi:10.1109/81.153647
[20]Stamov, G. T.: Existence of almost periodic solutions for impulsive cellular neural networks, Rocky mountain journal of mathematics 4, 1271-1285 (2008) · Zbl 1178.34100 · doi:10.1216/RMJ-2008-38-4-1271
[21]Stamov, G. T.; Stamova, I. M.: Almost periodic solutions for impulsive neural networks with delay, Applied mathematical modelling 31, 1263-1270 (2007) · Zbl 1136.34332 · doi:10.1016/j.apm.2006.04.008
[22]Stamova, I. M.; Stamov, G. T.: Lyapunov-razumikhin method for impulsive functional differential equations and applications to the population dynamics, Journal of computational and applied mathematics 130, 163-171 (2001) · Zbl 1022.34070 · doi:10.1016/S0377-0427(99)00385-4
[23]Yan, J.; Shen, J.: Impulsive stabilization of impulsive functional differential equations by Lyapunov-razumikhin functions, Nonlinear analysis 37, 245-255 (1999) · Zbl 0951.34049 · doi:10.1016/S0362-546X(98)00045-5
[24]Yang, Z.; Xu, D.: Stability analysis of delay neural networks with impulsive effects, IEEE transactions on circuits and systems – II 52, 517-521 (2005)
[25]Yi, Z.; Peng, P. A.; Leung, K. S.: Convergence analysis of cellular neural networks with unbounded delay, IEEE transactions on circuits and systems - I 48, 680-687 (2001) · Zbl 0994.82068 · doi:10.1109/81.928151
[26]Zhang, J.: Globally exponential stability of neural networks with variable delays, IEEE transactions on circuits and systems – I 50, 288-291 (2003)
[27]Zhang, J.; Suda, Y.; Iwasa, T.: Absolutely exponential stability of a class of neural networks with unbounded delay, Neural networks 17, 391-397 (2004) · Zbl 1074.68057 · doi:10.1016/j.neunet.2003.09.005