zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of positive solutions of a nonlinear fourth-order boundary value problem. (English) Zbl 1195.34037

Summary: We study the existence of positive solutions of fourth-order boundary value problem

u (4) (t)=f(t,u(t),u '' (t)),t(0,1)·
u(0)=u(1)=u '' (0)=u '' (1)=0,

where f:[0,1]×[0,)×(-,0][0,) is continuous. The proof of our main result is based upon the Krein-Rutman theorem and the global bifurcation techniques.

34B18Positive solutions of nonlinear boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
47J15Abstract bifurcation theory
[1]Gupta, C. P.: Existence and uniqueness theorems for a bending of an elastic beam equation, Appl. anal. 26, 289-304 (1988) · Zbl 0611.34015 · doi:10.1080/00036818808839715
[2]Gupta, C. P.: Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. math. Anal. appl. 135, 208-225 (1988) · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[3]Agarwal, R. P.: On fourth order boundary value problems arising in beam analysis, Differential integral equations 2, No. 1, 91-110 (1989) · Zbl 0715.34032
[4]Del Pino, M. A.; Mansevich, R. F.: Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. amer. Math. soc. 112, No. 1, 81-86 (1991) · Zbl 0725.34020 · doi:10.2307/2048482
[5]Ma, Ruyun; Wang, Haiyan: On the existence of positive solutions of fourth-order ordinary differential equations, Appl. anal. 59, 225-231 (1995) · Zbl 0841.34019 · doi:10.1080/00036819508840401
[6]Bai, Zhanbing; Wang, Haiyan: On positive solutions of some nonlinear fourth-order beam equations, J. math. Anal. appl. 270, No. 2, 357-368 (2002) · Zbl 1006.34023 · doi:10.1016/S0022-247X(02)00071-9
[7]Li, Yongxiang: Positive solutions of fourth-order boundary value problems with two parameters, J. math. Anal. appl. 281, 477-484 (2003) · Zbl 1030.34016 · doi:10.1016/S0022-247X(03)00131-8
[8]Chai, Guoqing: Existence of positive solutions for fourth-order boundary value problem with variable parameters, Nonlinear anal. 26, 289-304 (2007)
[9]Ma, Ruyun: Existence of positive solutions of a four-order boundary value problem, Appl. math. Comput. 168, 1219-1231 (2005)
[10]Ma, Ruyun: Nodal solutions of boundary value problems of fourth-order ordinary differential equations, J. math. Anal. appl. 319, 424-434 (2006) · Zbl 1098.34012 · doi:10.1016/j.jmaa.2005.06.045
[11]Ma, Ruyun: Nodal solutions for a fourth-order two-point boundary value problem, J. math. Anal. appl. 314, 254-265 (2006) · Zbl 1085.34015 · doi:10.1016/j.jmaa.2005.03.078
[12]Dancer, E. N.: Global solution branches for positive mappings, Arch. ration. Mech. anal. 52, 181-192 (1973) · Zbl 0275.47043 · doi:10.1007/BF00282326
[13]Zeidler, E.: Nonlinear functional analysis and its applications, I. Fixed-point theorems, (1985)
[14]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040