zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays. (English) Zbl 1195.34125
The authors study a class of stochastic delay differential equations (SDDEs) driven by Brownian motion which are used to model a bi-directional associative memory network. They establish a sufficient criterion for mean-square stability of the trivial solution in terms of the validity of four matrix inequalities involving matrices which are functions of the coefficients of the SDDE. To prove the result, the authors construct a suitable Lyapunov-Krasovskii function.
MSC:
34K50Stochastic functional-differential equations
90B15Network models, stochastic (optimization)
92B20General theory of neural networks (mathematical biology)
93E15Stochastic stability
34E20Asymptotic singular perturbations, turning point theory, WKB methods (ODE)
References:
[1]Blythe, S.; Mao, X.; Liao, X.: Stability of stochastic delay neural networks, J. franklin inst. 338, 481-495 (2001) · Zbl 0991.93120 · doi:10.1016/S0016-0032(01)00016-3
[2]Boyd, S.; Ghaoui, L. Ei; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[3]Cao, J.: Global asymptotic stability of delayed bidirectional associative memory neural networks, Appl. math. Comput. 142, 333-339 (2003) · Zbl 1031.34074 · doi:10.1016/S0096-3003(02)00308-9
[4]Chen, A.; Huang, L.; Cao, J.: Existence and stability of almost periodic solution for BAM neural networks with delays, Appl. math. Comput. 142, 333-339 (2003)
[5]Cohen, M. A.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE trans. Syst. man. Cyber. 13, 815-821 (1983) · Zbl 0553.92009
[6]Gao, H.; Chen, T.: New results on stability of discrete-time systems with time-varying state delay, IEEE trans. Autom. control 52, No. 2, 328-334 (2007)
[7]Gao, H.; Lam, J.; Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys. lett. A 360, No. 2, 263-273 (2006)
[8]Gopalsamy, K.; He, X. Z.: Delay-independent stability in bi-directional associative memory network, IEEE trans. Neural networks 5, 998-1002 (1994)
[9]Hale, J. K.: The theory of functional differential equations, (1997)
[10]Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proc. nat. Acad. sci. USA 81, 3088-3092 (1984)
[11]Hu, J.; Zhong, S.; Liang, L.: Exponential stability analysis of stochastic delayed cellular neural network, Chaos: solitons fract. 27, No. 4, 1006-1010 (2006) · Zbl 1084.68099 · doi:10.1016/j.chaos.2005.04.067
[12]Huang, H.; Feng, G.: Delay-dependent stability for uncertain stochastic neural networks with time-varying delay, Physica A: stat. Mech. appl. 381, 93-103 (2007)
[13]Huang, H.; Ho, D. W. C.; Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE trans. Circuits syst. 52, No. 5, 251-255 (2005)
[14]Kosko, B.: Adaptive bi-directional associative memories, Appl. opt. 6, No. 23, 4947-4960 (1987)
[15]Kosko, B.: Bi-directional associative memories, IEEE trans. Syst. man. Cybernet. 18, No. 1, 49-60 (1988)
[16]Liang, J.; Cao, J.: Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays, Chaos: solitons fract. 22, No. 4, 773-785 (2004) · Zbl 1062.68102 · doi:10.1016/j.chaos.2004.03.004
[17]Liang, J.; Cao, J.: Global output convergence of recurrent neural networks with distributed delays, Nonlinear anal.: real world appl. 8, No. 1, 187-197 (2007) · Zbl 1114.34056 · doi:10.1016/j.nonrwa.2005.06.009
[18]Liang, J.; Cao, J.; Ho, D. W. C.: Discrete-time bidirectional associative memory neural networks with variable delays, Phys. lett. A 335, No. 2 – 3, 226-234 (2005) · Zbl 1123.68346 · doi:10.1016/j.physleta.2004.12.026
[19]Liu, Y.; Wang, Z.; Liu, X.: On global exponential stability of generalized stochastic neural networks with mixed time delays, Neurocomputing 70, No. 1 – 3, 314-326 (2006)
[20]Liu, Y.; Wang, Z.; Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural networks 19, No. 5, 667-675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[21]Liu, Y.; Wang, Z.; Liu, X.: Global asymptotic stability of generalized bi-directional associative memory networks with discrete and distributed delays, Chaos: solitons fract. 28, No. 3, 793-803 (2006) · Zbl 1095.92001 · doi:10.1016/j.chaos.2005.08.004
[22]Liu, Y.; Wang, Z.; Liu, X.: Robust stability of discrete-time stochastic neural networks with time-varying delays, Neurocomputing 71, No. 4 – 6, 823-833 (2008)
[23]Park, J. H.: Robust stability of bidirectional associative memory neural networks with time delays, Phys. lett. A 349, 494-499 (2006)
[24]Skorohod, A. V.: Asymptotic methods in the theory of stochastic differential equations, (1989)
[25]Song, Q.; Cao, J.: Global exponential stability of bidirectional associative memory neural networks with distributed delays, J. comput. Appl. math. 202, No. 2, 266-279 (2007) · Zbl 1120.34061 · doi:10.1016/j.cam.2006.02.031
[26]Song, Q.; Cao, J.: Dynamics of bidirectional associative memory networks with distributed delays and reaction-diffusion terms, Nonlinear anal.: real world appl. 8, No. 1, 345-361 (2007) · Zbl 1114.35103 · doi:10.1016/j.nonrwa.2005.08.006
[27]Tank, D. W.; Hopfield, J. J.: Neural computation by concentrating information in time, Proc. natl. Acad. sci. USA 84, 1896-1991 (1987)
[28]Wang, Z.; Qiao, H.: Robust filtering for bilinear uncertain stochastic discrete-time systems, IEEE trans. Signal process 50, 560-567 (2002)
[29]Wang, Z.; Lauria, S.; Fang, J.; Liu, X.: Exponential stability of uncertain stochastic neural networks with mixed time delays, Chaos: solitons fract. 32, No. 1, 62-72 (2007) · Zbl 1152.34058 · doi:10.1016/j.chaos.2005.10.061
[30]Wang, Z.; Liu, Y.; Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays, Phys. lett. A 345, No. 4 – 6, 299-308 (2005)
[31]Wang, Z.; Liu, Y.; Fraser, K.; Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Phys. lett. A 354, No. 4, 288-297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[32]Wang, Z.; Liu, Y.; Li, M.; Liu, X.: Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE trans. Neural networks 17, No. 3, 814-820 (2006)
[33]Wang, Z.; Shu, H.; Fang, J.; Liu, X.: Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear anal.: real world appl. 7, No. 5, 1119-1128 (2006) · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[34]Wang, Y.; Xie, L.; De Souza, C. E.: Robust control of a class of uncertain nonlinear systems, Syst. control lett. 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[35]Zhang, J.; Yang, Y.: Global stability analysis of bidirectional associative memory neural networks with time delays, Int. J. Circ. theor. Appl. 29, 185-196 (2001) · Zbl 1001.34066 · doi:10.1002/cta.144
[36]Zhang, J.; Shi, P.; Qiu, J.: Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear anal.: real world appl. 8, No. 4, 1349-1357 (2007) · Zbl 1124.34056 · doi:10.1016/j.nonrwa.2006.06.010
[37]Zhao, H.: Global stability of bidirectional associative memory neural networks with distributed delays, Phys. lett. A 297, 182-190 (2002) · Zbl 0995.92002 · doi:10.1016/S0375-9601(02)00434-6