zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An approach via fractional analysis to non-linearity induced by coarse-graining in space. (English) Zbl 1195.37054
Loosely speaking, a coarse-grained space is a space in which the generic point is not infinitely thin, but rather has a thickness; and here this feature is modeled as a space in which the generic increment is not dx, but rather (dx) α ,0<α<1. The purpose of the article is to analyse the non-linearity induced by this coarse-graining effect. This approach via (dx) α leads us to the use of fractional analysis which thus provides models in the form of nonlinear differential equations of fractional order. Two illustrative examples are considered. In the first one, one shows that a particle which has a Gaussian white noise in a coarse-grained space exhibits a trajectory which looks like a generalized fractional Brownian motion. The second example shows how a simple one-dimensional linear dynamics is converted into a non-linear system of fractional order.
MSC:
37L99Infinite-dimensional dissipative dynamical systems
60J65Brownian motion
60H40White noise theory
References:
[1]Accardi, L.; Boukas, A.: White noise calculus and stochastic calculus, , 260-300 (2005) · Zbl 1136.60050
[2]Hida, T.; Huo, H. H.; Potthoff, J.; Streit, L.: White noise. An infinite dimensional calculus, (1993)
[3]Hida, T.: Selected papers, (2001)
[4]C.A. Cornell, Stochastic process models in structural engineering, Technical report 34, Department of civil engineering, Stanford University, Stanford, CA, 1964
[5]Gikhman, I. I.; Skorohod, A. W.: Stochastic differential equations, (1972)
[6]Itô, K.: On stochastic differential equations, Mem. amer. Soc. 4 (1951) · Zbl 0054.05803
[7]Stratonovich, R. L.: A new form of representing stochastic integrals and equations, J. SIAM control 4, 362-371 (1966)
[8]Tsybakov, B.; Georganas, N.: Self-similar processes in communication network, IEEE trans. Inform. theory 44, 1713-1725 (1998) · Zbl 0988.90003 · doi:10.1109/18.705538
[9]Mandelbrot, B. B.; Cioczek-Georges, R.: A class of micropulses and antipersistent fractional Brownian motions, Stochastic process. Appl. 60, 1-18 (1995) · Zbl 0846.60055 · doi:10.1016/0304-4149(95)00046-1
[10]Mandelbrot, B. B.; Cioczek-Georges, R.: Alternative micropulses and fractional Brownian motion, Stochastic process. Appl. 64, 143-152 (1996) · Zbl 0879.60076 · doi:10.1016/S0304-4149(96)00089-0
[11]Jumarie, G.: Stochastic differential equations with fractional Brownian motion input, Internat. J. Systems sci. 6, 1113-1132 (1993) · Zbl 0771.60043 · doi:10.1080/00207729308949547
[12]Jumarie, G.: Further results on the modelling of complex fractals in finance scaling observation and optimal portfolio selection, Syst. anal. Model. simul. 45, No. 10, 1483-1499 (2002) · Zbl 1092.91025 · doi:10.1080/02329290212166
[13]Jumarie, G.: Stock exchange dynamics involving both Gaussian and Poissonian white noises: approximation solution via a symbolic stochastic calculus, Insurance: math. Econom. 31, 179-189 (2002) · Zbl 1055.91027 · doi:10.1016/S0167-6687(02)00131-2
[14]Jumarie, G.: Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker-Planck equations, Chaos solitons fractals 4 (2004)
[15]Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)α, Appl. math. Lett. 18, 739-748 (2005) · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[16]Jumarie, G.: On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Appl. math. Lett. 18, 817-826 (2005) · Zbl 1075.60068 · doi:10.1016/j.aml.2004.09.012
[17]Jumarie, G.: Fourier’s transform of fractional order via Mittag–Leffler function and modified Riemann–Liouville derivative, Journal of applied mathematics and informatics 26, No. 5–6, 1101-1121 (2008)
[18]Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions, Appl. math. Lett. 22, 378-385 (2009) · Zbl 1171.26305 · doi:10.1016/j.aml.2008.06.003
[19]Anh, V. V.; Leonenko, N.: Scaling laws for fractional diffusion-wave equations with singular initial data, Statist. probab. Lett. 48, 239-252 (2000) · Zbl 0970.35174 · doi:10.1016/S0167-7152(00)00003-1
[20]Anh, V. V.; Leonenko, N.: Spectral theory of renormalized fractional random fields, Teor. imovirnost. Ta matem. Statyst. 66, 3-14 (2002) · Zbl 1029.60040
[21]Caputo, M.: Linear model of dissipation whose Q is almost frequency dependent II, Geophys. J. R. ast. Soc. 13, 529-539 (1967)
[22]Djrbashian, M. M.; Nersesian, S. B.: Fractional derivative and the Cauchy problem for differential equations of fractional order, Izv. acad. Nauk armjandkoi SSR 3, No. 1, 3-29 (1968)
[23]Kolwankar, K. M.; Gangal, A. D.: Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48, 49-68 (1997)
[24]Kolwankar, K. M.; Gangal, A. D.: Local fractional Fokker–Planck equation, Phys. rev. Lett. 80, 214-217 (1998) · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[25]Barkai, E.: Fractional Fokker–Planck equation solutions and applications, Phys. rev. E 63, 1-17 (2001)
[26]Barkai, E.; Metzler, R.; Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation, Phys. rev. 61, No. 1, 132-138 (2000)
[27]El-Sayed, A.: Fractional order diffusion-wave equation, Int. J. Theor. phys. 35, 311-322 (1996) · Zbl 0846.35001 · doi:10.1007/BF02083817
[28]El-Sayed, A. M. A.; Aly, M. A. E.: Continuation theorem of fractional order evolutionary integral equations, J. appl. Math. comput. 2, 525-534 (2002) · Zbl 1011.34047
[29]Hanyga, A.: Multidimensional solutions of time-fractional diffusion-wave equations, Proc. roy. Soc. London, A 458, 933-957 (2002) · Zbl 1153.35347 · doi:10.1098/rspa.2001.0904
[30]Huang, F.; Liu, F.: The space-time fractional diffusion equation with Caputo derivatives, J. appl. Math. comput. 19, No. 1-2, 179-190 (2005) · Zbl 1085.35003 · doi:10.1007/BF02935797
[31]Kober, H.: On fractional integrals and derivatives, Quart. J. Math. Oxford 11, 193-215 (1940) · Zbl 0025.18502
[32]Letnivov, A. V.: Theory of differentiation of fractional order, Math. sb. 3, 1-7 (1868)
[33]Liouville, J.: On the calculus of differentials with arbitrary orders, J. ecole polytechnique 13, 71-162 (1832)
[34]Mandelbrot, B. B.; Van Ness, J. W.: Fractional Brownian motions fractional noises and applications, SIAM rev. 10, 422-437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[35]Mandelbrot, B. B.: Fractals and scaling in finance: discontinuity concentration risk, (1997)
[36]Muslih, S. I.; Baleanu, D.; Rabei, E. M.: Fractional Hamilton’s equation of motion in fractional time, Cent. eur. J. phys. 5, 549-557 (2007)
[37]Osler, T. J.: Taylor’s series generalized for fractional derivatives and applications, SIAM J. Math. anal. 2, No. 1, 37-47 (1971) · Zbl 0215.12101 · doi:10.1137/0502004
[38]Podlubny, I.: Fractional differential equations, (1999)
[39]Saichev, A.; Zaslavsky, G.: Fractional kinetic equations: solutions and applications, Chaos 7, 753-764 (1997) · Zbl 0933.37029 · doi:10.1063/1.166272 · doi:http://ojps.aip.org/journal_cgi/getabs?KEY=CHAOEH&cvips=CHAOEH000007000004000753000001&gifs=Yes
[40]Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations, J. math. Phys. 30, No. 1, 134-144 (1989) · Zbl 0692.45004 · doi:10.1063/1.528578
[41]Wyss, W.: The fractional Black-Scholes equation, Fract. calc. Appl. anal. 3, No. 1, 51-61 (2000) · Zbl 1058.91045
[42]Dai, W.; Heyde, C. C.: Itô’s formula with respect to fractional Brownian motion and its application, J. appl. Math. stochastic anal. 9, No. 4, 439-448 (1996) · Zbl 0867.60029 · doi:10.1155/S104895339600038X
[43]Decreusefond, L.; Ustunel, A. S.: Stochastic analysis of the fractional Brownian motion, Potential anal. 10, 177-214 (1999) · Zbl 0924.60034 · doi:10.1023/A:1008634027843
[44]Duncan, T. E.; Hu, Y.; Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion I theory, SIAM J. Control optim. 38, 582-612 (2000) · Zbl 0947.60061 · doi:10.1137/S036301299834171X
[45]Hu, Y.; øksendal, B.: Fractional white noise calculus and applications to finance, Infin. dimens. Anal. quantum probab. Relat. top. 6, 1-32 (2003) · Zbl 1045.60072 · doi:10.1142/S0219025703001110
[46]Kochubei, A. N.: Fractional order diffusion, J. differential equations 26, No. 4, 485-492 (1990) · Zbl 0729.35064