zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-stationary subdivision schemes for surface interpolation based on exponential polynomials. (English) Zbl 1195.65015

A subdivision scheme for generating curves and surfaces from a finite set of control points is proposed. The main fact is that the subdivision scheme is non-stationary: the mask used to compute the new points changes from level to level. The definition of the mask at each level goes as follows: Given some finite set of exponential polynomials (functions of the type x α e βx ) the mask is the one fitting a kind of butterfly-shaped stencil for the set of exponential polynomials. Thus, the computation of the mask at each level is equivalent to solve a linear system. Examples of how the algorithm works for parametric surfaces as torus and spheres are shown.

A careful analysis of the convergence and of the smoothness of the subdivision scheme is done proving that these non-stationary schemes have the same smoothness and approximation order as the classical butterfly interpolatory scheme.

MSC:
65D17Computer aided design (modeling of curves and surfaces)
65D10Smoothing, curve fitting
References:
[1]Beccari, C.; Casciola, G.; Romani, L.: A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics, Comput. aided geom. Design 24, 1-9 (2007) · Zbl 1171.65325 · doi:10.1016/j.cagd.2006.10.003
[2]Beccari, C.; Casciola, G.; Romani, L.: An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control, Comput. aided geom. Design 24, 210-219 (2007) · Zbl 1171.65326 · doi:10.1016/j.cagd.2007.02.001
[3]Cavaretta, A.; Dahmen, W.; Micchelli, C. A.: Stationary subdivision, Mem. amer. Math. soc. 93, 1-186 (1991)
[4]Chaikin, G.: An algorithm for high speed curve generation, Computer graphics and image processing 3, 346-349 (1974)
[5]Choi, Y. -J.; Lee, Y. -J.; Yoon, J.; Lee, B. -G.; Kim, Y. -J.: A new class of non-stationary interpolatory subdivision schemes based on exponential polynomials, Lecture notes in computer science 4077, 563-570 (2006) · Zbl 1160.68616 · doi:10.1007/11802914_41
[6]Cohen, E.; Lyche, T.; Riesenfeld, R.: Discrete B-spline and subdivision techniques in computer-aided geometric design and computer graphics, Computer graphics and image processing 14, 87-111 (1980)
[7]Doo, D.; Sabin, M.: Behaviour of recursively division surfaces near extraordinary points, Comput.-aided design 10, 356-360 (1978)
[8]Deslauriers, G.; Dubuc, S.: Symmetric iterative interpolation, Constr. approx. 5, 49-68 (1989) · Zbl 0659.65004 · doi:10.1007/BF01889598
[9]Dyn, N.: Subdivision schemes in computer-aided geometric design, Advances in numerical analysis vol. II: wavelets, subdivision algorithms, radial basis functions, 36-104 (1992)
[10]Dyn, N.; Gregory, J. A.; Levin, D.: A four-point interpolatory subdivision scheme for curve design, Comput. aided geom. Design 4, 257-268 (1987) · Zbl 0638.65009 · doi:10.1016/0167-8396(87)90001-X
[11]Dyn, N.; Gregory, J. A.; Levin, D.: A butterfly subdivision scheme for surface interpolation with tension control, ACM trans. Graph. 9, 160-169 (1990) · Zbl 0726.68076 · doi:10.1145/78956.78958
[12]Dyn, N.; Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes, J. of math. Anal. appl. 193, 594-621 (1995) · Zbl 0836.65012 · doi:10.1006/jmaa.1995.1256
[13]Dyn, N.; Levin, D.; Luzzatto, A.: Exponential reproducing subdivision scheme, Found. comp. Math. 3, 187-206 (2003) · Zbl 1095.41001 · doi:10.1007/s10208-001-0047-1
[14]Dyn, N.; Levin, D.; Yoon, J.: Analysis of univariate non-stationary subdivision schemes with application to Gaussian-based interpolatory schemes, SIAM J. Math. anal. 39, 470-488 (2007) · Zbl 1132.41302 · doi:10.1137/050638217
[15]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[16]Jena, M. J.; Shunmugaraj, P.; Das, P. J.: A subdivision algorithm for trigonometric spline curves, Comput. aided geom. Design 19, 71-88 (2002) · Zbl 0984.68165 · doi:10.1016/S0167-8396(01)00090-5
[17]Jena, M. J.; Shunmugaraj, P.; Das, P. J.: A non-stationary subdivision scheme for generalizing trigonometric surfaces to arbitrary meshes, Comput. aided geom. Design 20, 61-77 (2003) · Zbl 1069.65557 · doi:10.1016/S0167-8396(03)00008-6
[18]Jena, M. K.; Shunmugaraj, P.; Das, P. C.: A non-stationary subdivision scheme for curve interpolation, Anziam J. 44, No. E, 216-235 (2003)
[19]Morin, G.; Warren, J.; Weimer, H.: A subdivision scheme for surfaces of revolution, Comput. aided geom. Design 18, 483-502 (2001) · Zbl 0970.68177 · doi:10.1016/S0167-8396(01)00043-7
[20]Romani, L.: From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms, J. of comp. And appl. Math. 224, 383-396 (2009) · Zbl 1159.65019 · doi:10.1016/j.cam.2008.05.013
[21]Warren, J.; Weimer, H.: Subdivision methods for geometric design, (2002)