zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical method for a singularly perturbed convection-diffusion problem with delay. (English) Zbl 1195.65089
The authors analyze a singularly perturbed boundary value problem for a linear second-order delay differential equation. Convergence analysis is performed and numerical results are also provided.
MSC:
65L03Functional-differential equations (numerical methods)
34K06Linear functional-differential equations
34K10Boundary value problems for functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
65L10Boundary value problems for ODE (numerical methods)
65L20Stability and convergence of numerical methods for ODE
65L12Finite difference methods for ODE (numerical methods)
34E15Asymptotic singular perturbations, general theory (ODE)
References:
[1]Nayfeh, A. H.: Introduction to perturbation techniques, (1993)
[2]O’malley, R. E.: Singular perturbation methods for ordinary differential equations, (1991) · Zbl 0743.34059
[3]Doolan, E. R.; Miller, J. J. H.; Schilders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers, (1980)
[4]Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Fitted numerical methods for singular perturbation problems, (1996)
[5]Roos, H. G.; Stynes, M.; Tobiska, L.: Numerical methods for singularly perturbed differential equations, (1996)
[6]Farrel, P. A.; Hegarty, A. F.; Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Robust computational techniques for boundary layers, (2000) · Zbl 0964.65083
[7]El’sgolts, L. E.: Qualitative methods in mathematical analysis, Trans. math. Monogr. 12 (1964) · Zbl 0133.37102
[8]Bellman, R.; Cooke, K. L.: Differential difference equations, (1963)
[9]Stein, R. B.: A theoretical analysis of neuronal variability, Biophys. J. 5, 173-194 (1965)
[10]Tuckwell, H. C.: On the first exit time problem for temporally homogeneous Markov processes, J. appl. Probab. 13, 39-46 (1976) · Zbl 0335.60046 · doi:10.2307/3212663
[11]Denevers, K.; Schmitt, K.: An application of the shooting method to boundary value problems for second-order delay equations, J. math. Anal. appl. 36, 588-597 (1971) · Zbl 0219.34050 · doi:10.1016/0022-247X(71)90041-2
[12]Gustafson, G. B.; Schmitt, K.: Nonzero solutions of boundary value problems for second-order ordinary and delay differential equations, J. differ. Equ. 12, 129-147 (1972) · Zbl 0227.34017 · doi:10.1016/0022-0396(72)90009-5
[13]Jiang, D.: Multiple positive solutions for boundary value problems of second-order delay differential equations, Appl. math. Lett. 15, 575-583 (2002) · Zbl 1011.34055 · doi:10.1016/S0893-9659(02)80009-X
[14]Bai, C.; Ma, J.: Eigenvalue criteria for existence of multiple positive solutions to boundary value problems of second-order delay differential equations, J. math. Anal. appl. 301, 457-476 (2005) · Zbl 1081.34061 · doi:10.1016/j.jmaa.2004.07.037
[15]Ntouyas, S. K.; Sficas, Y. G.; Tsamatos, P.: An existence principle for boundary value problems for second-order functional differential equations, Nonlinear anal. 20, 215-222 (1993) · Zbl 0774.34052 · doi:10.1016/0362-546X(93)90159-P
[16]Lee, J. W.; O’regan, D.: Existence results for differential delay equations-II, Nonlinear anal. 17, 683-702 (1991) · Zbl 0782.34071 · doi:10.1016/0362-546X(91)90113-F
[17]Lee, J. W.; O’regan, D.: Existence results for differential delay equations-I, J. differ. Equ. 102, 342-359 (1993) · Zbl 0782.34070 · doi:10.1006/jdeq.1993.1033
[18]Henderson, J.: Boundary value problems for functional differential equations, (1995) · Zbl 0834.00035
[19]C.W. Cryer, Numerical methods for functional differential equations, in delay and functional differential equations, in: K. Schmitt (Ed.), Proceeding of Conference held at Park City, Utah, 1972.
[20]Norkin, S. B.: Differential equations of the second order with retarded argument, Trans. math. Monogr. 31 (1972) · Zbl 0234.34080
[21]Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. math. 42, 502-531 (1982) · Zbl 0515.34058 · doi:10.1137/0142036
[22]Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations II. Rapid oscillations and resonances, SIAM J. Appl. math. 45, 687-707 (1985) · Zbl 0623.34050 · doi:10.1137/0145041
[23]Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations V. Small shifts with layer behavior, SIAM J. Appl. math. 54, 249-272 (1994) · Zbl 0796.34049 · doi:10.1137/S0036139992228120
[24]Jun-Tao, Xu: Singular perturbation solution of boundary value problem for a second-order differential-difference equation, Appl. math. Mech. (English edition) 9, 681-692 (1988) · Zbl 0735.34048 · doi:10.1007/BF02465697
[25]Kadalbajoo, M. K.; Sharma, K. K.: Numerical analysis of singularly perturbed delay differential equations with layer behavior, Appl. math. Comput. 157, 11-28 (2004) · Zbl 1069.65086 · doi:10.1016/j.amc.2003.06.012
[26]Kadalbajoo, M. K.; Sharma, K. K.: Numerical treatment of boundary value problems for second-order singularly perturbed delay differential equations, Comput. appl. Math. 24, 151-172 (2005) · Zbl 1213.65108 · doi:10.1590/S0101-82052005000200001 · doi:http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1807-03022005000200001&lng=en&nrm=iso&tlng=en
[27]Kadalbajoo, M. K.; Ramesh, V. P.: Numerical methods on shishkin mesh for singularly perturbed delay differential equations with a grid adaptation strategy, Appl. math. Comput. 188, 1816-1831 (2007) · Zbl 1120.65089 · doi:10.1016/j.amc.2006.11.046
[28]Kadalbajoo, M. K.; Sharma, K. K.: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations, Appl. math. Comput. 197, 692-707 (2008) · Zbl 1141.65062 · doi:10.1016/j.amc.2007.08.089
[29]Boglaev, I.: Uniform numerical methods on arbitrary meshes for singularly perturbed problems with discontinuous data, Appl. math. Comput. 154, 815-833 (2004) · Zbl 1057.65045 · doi:10.1016/S0096-3003(03)00751-3
[30]Cakir, M.; Amiraliyev, G. M.: Numerical solution of a singularly perturbed three-point boundary value problem, Int. J. Comput. math. 84, 1465-1481 (2007) · Zbl 1130.65073 · doi:10.1080/00207160701296462
[31]V.B. Andreev, Green’s function and uniform convergence of monotone difference schemes for a singularly perturbed convection – diffusion equation on Shishkin’s mesh in one-and two-dimensions. DCU Math. Dept. Preprint Series, MS-01-15, 2001.
[32]Andreev, V. B.: The Green function and a priori estimates of solutions of monotone three-point singularly perturbed finite difference schemes, Differ. equ. 37, 923-933 (2001) · Zbl 0999.65079 · doi:10.1023/A:1011949419389