zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The extended finite element method in thermoelastic fracture mechanics. (English) Zbl 1195.74170
Summary: The extended finite element method (XFEM) is applied to the simulation of thermally stressed, cracked solids. Both thermal and mechanical fields are enriched in the XFEM way in order to represent discontinuous temperature, heat flux, displacement, and traction across the crack surface, as well as singular heat flux and stress at the crack front. Consequently, the cracked thermomechanical problem may be solved on a mesh that is independent of the crack. Either adiabatic or isothermal condition is considered on the crack surface. In the second case, the temperature field is enriched such that it is continuous across the crack but with a discontinuous derivative and the temperature is enforced to the prescribed value by a penalty method. The stress intensity factors are extracted from the XFEM solution by an interaction integral in domain form with no crack face integration. The method is illustrated on several numerical examples (including a curvilinear crack, a propagating crack, and a three-dimensional crack) and is compared with existing solutions.
74S05Finite element methods in solid mechanics
74R10Brittle fracture
74F05Thermal effects in solid mechanics