zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fast integration and weight function blending in the extended finite element method. (English) Zbl 1195.74201
Summary: Two issues in the extended finite element method (XFEM) are addressed: efficient numerical integration of the weak form when the enrichment function is self-equilibrating and blending of the enrichment. The integration is based on transforming the domain integrals in the weak form into equivalent contour integrals. It is shown that the contour form is computationally more efficient than the domain form, especially when the enrichment function is singular and/or discontinuous. A method for alleviating the errors in the blending elements is also studied. In this method, the enrichment function is pre-multiplied by a smooth weight function with compact support to allow for a completely smooth transition between enriched and unenriched subdomains. A method for blending step function enrichment with singular enrichments is described. It is also shown that if the enrichment is not shifted properly, the weighted enrichment is equivalent to the standard enrichment. An edge dislocation and a crack problem are used to benchmark the technique; the influence of the variables that parameterize the weight function is analyzed. The resulting method shows both improved accuracy and optimum convergence rates and is easily implemented into existing XFEM codes.
74S05Finite element methods in solid mechanics