zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric finite element discretization of Maxwell equations in primal and dual spaces. (English) Zbl 1195.78058
Summary: Based on a geometric discretization scheme for Maxwell equations, we unveil a mathematical transformation between the electric field intensity E and the magnetic field intensity H, denoted as Galerkin duality. Using Galerkin duality and discrete Hodge operators, we construct two system matrices, [XE] (primal formulation) and [XH] (dual formulation) respectively, that discretize the second-order vector wave equations. We show that the primal formulation recovers the conventional (edge-element) finite element method (FEM) and suggests a geometric foundation for it. On the other hand, the dual formulation suggests a new (dual) type of FEM. Although both formulations give identical dynamical physical solutions, the dimensions of the null spaces are different.
MSC:
78M10Finite element methods (optics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)