zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New results of global robust exponential stability of neural networks with delays. (English) Zbl 1196.34098
By homeomorphism techniques and Lyapunov functions, sufficient conditions for the existence, uniqueness and global rust exponential stability of interval neural networks with delays are presented. The obtained results improve and generalize some known results.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Hou, Y.; Liao, T.; Yan, J.: Global asymptotic stability for a class of nonlinear neural networks with multiple delays, Nonlinear anal. 67, 3037-3040 (2007) · Zbl 1128.34324 · doi:10.1016/j.na.2006.09.049
[2]Li, X.; Huang, L.; Zhu, H.: Global stability of cellular neural networks with constant and variable delays, Nonlinear anal. 53, 319-333 (2003) · Zbl 1011.92006 · doi:10.1016/S0362-546X(02)00176-1
[3]W. Zhang, B.S. Chen, Q. Li, Feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise, in: Proceedings of the 2004 American Control Conference (ACC), Boston, USA, June 30–July 2 2004, pp. 3689–3692
[4]Zhao, W.; Zhang, H.: Globally exponential stability of neural network with constant and variable delays, Phys. lett. A 352, 350-357 (2006) · Zbl 1187.34105 · doi:10.1016/j.physleta.2005.12.015
[5]Zhao, W.: Global exponential stability analysis of Cohen–Grossberg neural network with delays, Commun. nonlinear sci. Numer. simul. 13, 847-856 (2008) · Zbl 1221.93207 · doi:10.1016/j.cnsns.2006.09.004
[6]Zhao, W.; Yan, A.: Stability analysis of neural networks with both variable and unbounded delays, Chaos solitons fractals (2007)
[7]Zhao, W.; Tan, Y.: Harmless delays for global exponential stability of Cohen-Grossberg neural networks, Math. comput. Simulation 74, 47-57 (2007) · Zbl 1119.34055 · doi:10.1016/j.matcom.2006.08.003
[8]Zhao, W.: Dynamics of Cohen-Grossberg neural network with variable coefficients and time-varying delays, Nonlinear anal. RWA 9, 1024-1037 (2008) · Zbl 1147.34058 · doi:10.1016/j.nonrwa.2007.02.002
[9]Zhou, Q.: Global exponential stability of BAM neural networks with distributed delays and impulses, Nonlinear anal. RWA (2007)
[10]Arik, S.: Global robust stability analysis of neural networks with discrete time delays, Chaos solitons fractals 26, 1407-1414 (2005) · Zbl 1122.93397 · doi:10.1016/j.chaos.2005.03.025
[11]Arik, S.: Global robust stability of delayed neural networks, IEEE trans. Circuits syst. I 50, No. 1, 156-160 (2003)
[12]Cao, J.; Huang, D.; Qu, Y.: Global robust stability of delayed recurrent neural networks, Chaos solitons fractals 23, 221-229 (2005) · Zbl 1075.68070 · doi:10.1016/j.chaos.2004.04.002
[13]Cao, J.; Ho, D.; Huang, X.: LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay, Nonlinear anal. 66, 1558-1572 (2007) · Zbl 1120.34055 · doi:10.1016/j.na.2006.02.009
[14]Li, C.; Liao, X.; Zhang, R.; Prasad, A.: Global robust exponential stability analysis for interval neural networks with time-varying delays, Chaos solitons fractals 25, 751-757 (2005) · Zbl 1136.65328 · doi:10.1016/j.chaos.2004.11.053
[15]Ozcan, N.; Arik, S.: Global robust stability analysis of neural networks with multiple time delays, IEEE trans. Circuits syst. I 53, No. 1, 166-176 (2006)
[16]Rong, L.: LMI-based criteria for robust stability of Cohen-Grossberg neural networks with delay, Phys. lett. A 339, 63-73 (2005) · Zbl 1137.93401 · doi:10.1016/j.physleta.2005.03.023
[17]Singh, V.: A novel global robust stability criterion for neural networks with delay, Phys. lett. A 337, 369-373 (2005) · Zbl 1136.34346 · doi:10.1016/j.physleta.2005.02.004
[18]Singh, V.: Novel global robust stability criterion for neural networks with delay, Chaos solitons fractals (2008)
[19]Wu, W.; Cui, B.: Global robust exponential stability of delayed neural networks, Chaos solitons fractals 35, 747-754 (2008) · Zbl 1138.93332 · doi:10.1016/j.chaos.2006.05.096
[20]Xiong, W.; Xu, B.: Some criteria for robust stability of Cohen-Grossberg neural networks with delays, Chaos solitons fractals 36, 1357-1365 (2008) · Zbl 1183.34074 · doi:10.1016/j.chaos.2006.09.065
[21]Yang, D.: New delay-dependent global asymptotic stability criteria of delayed Hopfield neural networks, Nonlinear anal. RWA (2007)