zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type. (English) Zbl 1196.34107

Consider stochastic interval neural networks with distributed delays of neutral type equation:

d[x(t)-Dx(t-μ(t))]=- A x (t) + W (1) f (x(t)) + W (2) f (x(t-τ(t))) + W (3) - t K (t-s) f (x(s)) d sdt+σ(t,x(t),x(t-τ(t)),x(t-μ(t)))dω(t)·

The author studies stochastic stability for interval neural networks with continuously distributed delays of neutral type. Using a Lyapunov-Krasovskii functional and LMI technique, the author obtains sufficient conditions for global robust stability. Obtained results are demonstrated by using the MATLAB LMI control toolbox.

MSC:
34K50Stochastic functional-differential equations
34K20Stability theory of functional-differential equations
34K40Neutral functional-differential equations
92B20General theory of neural networks (mathematical biology)
Software:
Matlab
References:
[1]Hopfield, J.: Neural networks and physical systems with collective computational abilities, Proceedings of the national Academy of sciences of the united states of America 79, 2554-2558 (1982)
[2]Cohen, M.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE transactions on systems, man, and cybernetics 13, 815-826 (1983) · Zbl 0553.92009
[3]Chua, L.; Yang, L.: Cellular neural networks: theory and applications, IEEE transactions on circuits and systems I 35, 1257-1290 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[4]Kosko, B.: Adaptive bidirectional associative memories, Applied optics 26, 4947-4960 (1987)
[5]Kannan, S.: Extended bidirectional associative memories: a study on poor education, Mathematical and computer modelling 42, 389-395 (2005) · Zbl 1121.91423 · doi:10.1016/j.mcm.2004.02.045
[6]Lee, D.: A discrete sequential bidirectional associative memories for multistep pattern recognition, Pattern recognition letters 19, 1087-1102 (1998) · Zbl 0924.68176 · doi:10.1016/S0167-8655(98)00086-5
[7]Maeda, Y.; Wakamura, M.: Bidirectional associative memory with learning capability using simultaneous perturbation, Neurocomputing 69, 182-197 (2005)
[8]Otawara, K.; Fan, L.; Tsutsumi, A.; Yano, T.; Kuramoto, K.; Yoshida, K.: An artificial neural network as a model for chaotic behavior of a three-phase fluidized bed, Chaos, solitons and fractals 13, 353-362 (2002) · Zbl 1073.76656 · doi:10.1016/S0960-0779(00)00250-2
[9]Blythea, S.; Mao, X.; Liao, X.: Stability of stochastic delay neural networks, Journal of the franklin institute 338, 481-495 (2001) · Zbl 0991.93120 · doi:10.1016/S0016-0032(01)00016-3
[10]Zhou, Q.; Wan, L.: Exponential stability of stochastic delayed Hopfield neural networks, Applied mathematics and computation 199, 84-89 (2008) · Zbl 1144.34389 · doi:10.1016/j.amc.2007.09.025
[11]Lu, J.; Ma, Y.: Mean square exponential stability and periodic solutions of stochastic delay cellular neural networks, Chaos, solitons and fractals 38, 1323-1331 (2008) · Zbl 1154.34395 · doi:10.1016/j.chaos.2007.08.053
[12]Rakkiyappan, R.; Balasubramaniam, P.: Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays, Applied mathematics and computation 198, 526-533 (2008) · Zbl 1144.34375 · doi:10.1016/j.amc.2007.08.053
[13]Balasubramaniam, P.; Rakkiyappan, R.: Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays, Applied mathematics and computation 204, 680-686 (2008) · Zbl 1152.93049 · doi:10.1016/j.amc.2008.05.001
[14]Rakkiyappan, R.; Balasubramaniam, P.; Lakshmanan, S.: Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Physics letters A 372, 5290-5298 (2008) · Zbl 1223.92001 · doi:10.1016/j.physleta.2008.06.011
[15]Wang, Z.; Liu, Y.; Li, M.; Liu, X.: Stability analysis for stochastic Cohen – Grossberg neural networks with mixed time delays, IEEE transactions on neural networks 17, 814-820 (2006)
[16]Sun, Y.; Cao, J.: Pth moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear analysis 8, 1171-1185 (2007) · Zbl 1196.60125 · doi:10.1016/j.nonrwa.2006.06.009
[17]Huang, C.; Cao, J.: Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays, Neurocomputing 72, 3352-3356 (2009)
[18]Li, X.; Cao, J.: Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the franklin institute 345, 779-791 (2008) · Zbl 1169.93350 · doi:10.1016/j.jfranklin.2008.04.012
[19]Cao, J.; Wang, Z.; Sun, Y.: Synchronization in an array of linearly stochastically coupled networks with time delays, Physica A: statistical mechanics and its applications 385, 718-728 (2007)
[20]Su, W.; Chen, Y.: Global robust stability criteria of stochastic Cohen – Grossberg neural networks with discrete and distributed time-varying delays, Communications in nonlinear science and numerical simulation 14, 520-528 (2009) · Zbl 1221.37196 · doi:10.1016/j.cnsns.2007.09.001
[21]Park, J.; Park, C.; Kwon, O.; Lee, S.: A new stability criterion for bidirectional associative memory neural networks of neutral-type, Applied mathematics and computation 199, 716-722 (2008) · Zbl 1149.34345 · doi:10.1016/j.amc.2007.10.032
[22]Kwon, O.; Park, J.; Lee, S.: On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Applied mathematics and computation 197, 864-873 (2008) · Zbl 1144.34052 · doi:10.1016/j.amc.2007.08.048
[23]Su, W.; Chen, Y.: Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays, Communications in nonlinear science and numerical simulation 14, 1576-1581 (2009) · Zbl 1221.93214 · doi:10.1016/j.cnsns.2008.04.001
[24]Lou, X.; Cui, B.: Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters, Chaos, solitons and fractals 39, 2188-2197 (2009) · Zbl 1197.34104 · doi:10.1016/j.chaos.2007.06.114
[25]Park, J.; Kwon, O.; Lee, S.: LMI optimization approach on stability for delayed neural networks of neutral-type, Applied mathematics and computation 196, 236-244 (2008) · Zbl 1157.34056 · doi:10.1016/j.amc.2007.05.047
[26]Samli, R.; Arik, S.: New results for global stability of a class of neutral-type neural systems with time delays, Applied mathematics and computation 210, 564-570 (2009) · Zbl 1170.34352 · doi:10.1016/j.amc.2009.01.031
[27]Rakkiyappan, R.; Balasubramaniam, P.: LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays, Applied mathematics and computation 204, 317-324 (2008) · Zbl 1168.34356 · doi:10.1016/j.amc.2008.06.049
[28]Rakkiyappan, R.; Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays, Neurocomputing 71, 1039-1045 (2008)
[29]Liu, L.; Han, Z.; Li, W.: Global stability analysis of interval neural networks with discrete and distributed delays of neutral type, Expert systems with applications 36, 7328-7331 (2009)
[30]Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.: Global exponential stability results for neutral-type impulsive neural networks, Nonlinear analysis: real world applications 11, 122-130 (2010) · Zbl 1186.34101 · doi:10.1016/j.nonrwa.2008.10.050
[31]Liao, X.; Chen, G.; En, Sanchez: LMI-based approach for asymptotically stability analysis of delayed neural networks, IEEE transactions on circuits and systems I 49, 1033-1039 (2002)
[32]Berman, A.; Plemmons, R. J.: Nonnegative matrices in mathematical sciences, (1979) · Zbl 0484.15016
[33]S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1994.
[34]Su, W.; Chen, Y.: Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays, Communications in nonlinear science and numerical simulation 14, 2293-2300 (2009) · Zbl 1221.93215 · doi:10.1016/j.cnsns.2008.05.001
[35]Park, J.; Kwon, O.: Synchronization of neural networks of neutral type with stochastic perturbation, Modern physics letters B 23, 1743-1751 (2009) · Zbl 1167.82358 · doi:10.1142/S0217984909019909
[36]Park, J.; Lee, S.; Jung, H.: LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks, Journal of optimization theory and applications 143, 357-367 (2009) · Zbl 1175.90085 · doi:10.1007/s10957-009-9562-z
[37]Park, J.; Kwon, O.: Analysis on global stability of stochastic neural networks of neutral type, Modern physics letters B 22, 3159-3170 (2008) · Zbl 1156.68546 · doi:10.1142/S0217984908017680
[38]Guo, Y.: Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays, Applied mathematics and computation 215, 791-795 (2009) · Zbl 1180.34092 · doi:10.1016/j.amc.2009.06.002
[39]Singh, V.: Improved global robust stability of interval delayed neural networks via split interval: generalizations, Applied mathematics and computation 206, 290-297 (2008) · Zbl 1168.34357 · doi:10.1016/j.amc.2008.08.036
[40]Yu, J.; Zhang, K.; Fei, S.; Li, T.: Simplified exponential stability analysis for recurrent neural networks with discrete and distributed time-varying delays, Applied mathematics and computation 205, 465-474 (2008) · Zbl 1168.34049 · doi:10.1016/j.amc.2008.08.022