zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem. (English) Zbl 1196.35109
Summary: Let 𝛺 be a C 1,1 -bounded domain in n for n2. In this paper, we are concerned with the asymptotic behavior of the unique positive classical solution to the singular boundary-value problem Δu+a(x)u -σ =0 in 𝛺, u |𝛺 =0, where σ0, a is a nonnegative function in C loc α (𝛺), 0<α<1 and there exists c>0 such that 1 ca(x)(δ(x)) λ k=1 m (Log k (ω δ(x))) μ k c. Here, λ2,μ k , ω is a positive constant and δ(x)=dist(x,𝛺).
35J75Singular elliptic equations
35J25Second order elliptic equations, boundary value problems
35B09Positive solutions of PDE
35B40Asymptotic behavior of solutions of PDE
[1]Cîrstea, F. -C.; Radulescu, V.: Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. contemp. Math. 4, 559-585 (2002) · Zbl 1005.35042 · doi:10.1142/S0219199702000737
[2]Cîrstea, F. -C.; Radulescu, V.: Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. sci. Paris sér. I 335, 447-452 (2002) · Zbl 1183.35124 · doi:10.1016/S1631-073X(02)02503-7
[3]Cîrstea, F. -C.; Radulescu, V.: Asymptotics for the blow-up boundary solution of the logistic equation with absorption, C. R. Acad. sci. Paris sér. I 336, 231-236 (2003) · Zbl 1068.35035 · doi:10.1016/S1631-073X(03)00027-X
[4]Cîrstea, F. -C.; Radulescu, V.: Extremal singular solutions for degenerate logistic-type equations in anisotropic media, C. R. Acad. sci. Paris sér. I 339, 119-124 (2004) · Zbl 1101.35034 · doi:10.1016/j.crma.2004.04.025
[5]Cîrstea, F. -C.: An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up, C. R. Acad. sci. Paris sér. I 339, 689-694 (2004) · Zbl 1133.35352 · doi:10.1016/j.crma.2004.10.005
[6]Crandall, M. G.; Rabinowitz, P. H.; Tartar, L.: On a Dirichlet problem with a singular nonlinearity, Comm. partial differential equations 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[7]Ghergu, M.; Radulescu, V.: Singular elliptic problems. Bifurcation and asymptotic analysis, Oxford lecture ser. Math. appl. 37 (2008)
[8]Kristàly, A.; Radulescu, V.; Varga, C.: Variational principles in mathematical physics, geometry and economics: qualitative analysis of nonlinear equations and unilateral problems, Encyclopedia math. Appl. 136 (2010)
[9]Lazer, A. C.; Mckenna, P. J.: On a singular elliptic boundary value problem, Proc. amer. Math. soc. 111, 721-730 (1991) · Zbl 0727.35057 · doi:10.2307/2048410
[10]Mâagli, H.; Zribi, M.: On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domain of rn, Positivity 9, 667-686 (2005) · Zbl 1131.35335 · doi:10.1007/s11117-005-2782-z
[11]Maric, V.: Regular variation and differential equations, Lecture notes in math. 1726 (2000)
[12]Othman, S. B.; Mâagli, H.; Masmoudi, S.; Zribi, M.: Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear anal. 71, 4137-4150 (2009) · Zbl 1177.35091 · doi:10.1016/j.na.2009.02.073
[13]Resnick, S. I.: Extreme values, regular variation and point processes, (1987)
[14]Zeddini, N.: Positive solutions for a singular nonlinear problem on a bounded domain in R2, Nonlinear anal. 18, 97-118 (2003) · Zbl 1028.34030 · doi:10.1023/A:1020559619108
[15]Zhang, Z.: The asymptotic behavior of the unique solution for the singular Lane – emdem – Fowler equation, J. math. Anal. appl. 312, 33-43 (2005) · Zbl 1165.35377 · doi:10.1016/j.jmaa.2005.03.023