zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network. (English) Zbl 1196.37088
This paper considers a two-cell inhibitory neural network with adaptation modeled by a four-dimensional system of ordinary differential equations. It was found that the system will admit the mixed-mode oscillations (MMOs), and the authors proved that the MMOs are due to a singular Hopf bifurcation point situated in close distance to the transition point to the winner-take-all case.
37G35Attractors and their bifurcations
92C20Neural biology
[1]Hudson, J.; Hart, M.; Marinko, D.: An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–zhabotinskii reaction, J. chem. Phys. 71, 1601-1606 (1979)
[2]Petrov, V.; Scott, S. K.; Showalter, K.: Mixed-mode oscillations in chemical systems, J. chem. Phys. 97, No. 9, 6191-6198 (1992)
[3]Krischer, K.; Lübke, M.; Eiswirth, M.; Wolf, W.; Hudson, J. L.; Ertl, G.: A hierarchy of transitions to mixed mode oscillations in an electrochemical system, Physica D 62, 123-133 (1993) · Zbl 0800.92015 · doi:10.1016/0167-2789(93)90277-8
[4]Epstein, I. R.; Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns, and chaos, J. phys. Chem. 100, 13132-13147 (1996)
[5]Vanag, V. K.; Yang, L.; Dolnik, M.; Zhabotinsky, A. M.; Epstein, I. R.: Oscillatory cluster patterns in a homogeneous chemical system with global feedback, Nature 406, 389-391 (2000)
[6]Vanag, V. K.; Zhabotinsky, A. M.; Epstein, I. R.: Pattern formation in the Belousov–Zhabotinsky reaction with photochemical global feedback, J. phys. Chem. A 104, 11566-11577 (2000)
[7]Kovacs, K.; Leda, M.; Vanag, V. K.; Epstein, I. R.: Small-amplitude and mixed-mode ph oscillations in the bromate-sulfite-ferrocyanide-aluminum(III) system, J. phys. Chem. A 113, 146-156 (2009)
[8]Hayashi, T.: Mixed-mode oscillations and chaos in a glow discharge, Phys. rev. Lett. 84, 3334-3337 (2000)
[9]Mikikian, M.; Cavarroc, M.; Couedel, L.; Tessier, Y.; Boufendi, L.: Mixed-mode oscillations in complex-plasma instabilities, Phys. rev. Lett. 100, 1-4 (2008)
[10]Alonso, A. A.; Llinás, R. R.: Subthreshold na+-dependent theta like rhythmicity in stellate cells of entorhinal cortex layer II, Nature 342, 175-177 (1989)
[11]Del Negro, C. A.; Wilson, C. G.; Butera, R. J.; Rigatto, H.; Smith, J. C.: Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network, Biophys. J. 82, 206-214 (2002)
[12]Medvedev, G.; Cisternas, J. E.: Multimodal regimes in a compartmental model of the dopamine neuron, Physica D 194, No. 3–4, 333-356 (2004) · Zbl 1055.92012 · doi:10.1016/j.physd.2004.02.006
[13]Kuznetsov, A.; Kopell, N.; Wilson, C.: Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron, J. neurophysiol. 95, 932-947 (2006)
[14]Rubin, J.; Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple timescales, Chaos 18, 1-12 (2008)
[15]Ermentrout, B.; Wechselberger, M.: Canards, clusters and synchronization in a weakly coupled interneuron model, SIAM J. Appl. dyn. Syst. 8, No. 1, 253-278 (2009) · Zbl 1167.34352 · doi:10.1137/080724010
[16]Rotstein, H.; Wechselberger, M.; Kopell, N.: Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. dyn. Syst. 7, 1582-1611 (2008) · Zbl 1167.34353 · doi:10.1137/070699093
[17]Shilnikov, L.; Shilnikov, A.: Shilnikov bifurcation, Scholarpedia 2, No. 8, 1981 (2007)
[18]Koper, M. T. M.: Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol–Duffing model with a cross-shaped phase diagram, Physica D 80, 72-94 (1995) · Zbl 0889.34034 · doi:10.1016/0167-2789(95)90061-6
[19]Larter, R.; Steinmetz, C.: Chaos via mixed-mode oscillations, Phil. trans. R. soc. London A 337, 291-298 (1991) · Zbl 0744.92017 · doi:10.1098/rsta.1991.0124
[20]Guckenheimer, J.; Willms, A.: Asymptotic analysis of subcritical Hopf-homoclinic bifurcation, Physica D 139, 195-216 (2000) · Zbl 0954.34032 · doi:10.1016/S0167-2789(99)00225-0
[21]Szmolyan, P.; Wechselberger, M.: Canards in R3, J. differential equations 177, 419-453 (2001)
[22]Brons, M.; Krupa, M.; Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon, Fields inst. Commun. 49, 39-63 (2006) · Zbl 1228.34063
[23]Rotstein, H.; Kopell, N.; Zhabotinsky, A. M.; Epstein, I. R.: Canard phenomenon and localization of oscillations in the Belousov–Zhabotinsky reaction with global feedback, J. chem. Phys. 119, 8824-8832 (2003)
[24]Drover, J.; Rubin, J.; Su, J.; Ermentrout, B.: Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies, SIAM J. Appl. math. 62, No. 1, 69-92 (2004) · Zbl 1121.34059 · doi:10.1137/S0036139903431233
[25]Guckenheimer, J.: Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. dyn. Syst. 7, No. 4, 1355-1377 (2008) · Zbl 1168.37025 · doi:10.1137/080718528
[26]Wechselberger, M.: Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Applied dynamical systems 4, 101-139 (2005) · Zbl 1090.34047 · doi:10.1137/030601995
[27]R. Curtu, J. Rubin, Canards and folded saddle-node singularities of type II in a reduced firing rate inhibitory network, Chaos (2010) (submitted for publication)
[28]M. Krupa, M. Wechselberger, Local analysis near a folded saddle-node singularity (2008), preprint
[29]Laing, C. R.; Chow, C. C.: A spiking neuron model for binocular rivalry, J. comput. Neurosci. 12, 39-53 (2002)
[30]Curtu, R.; Shpiro, A.; Rubin, N.; Rinzel, J.: Mechanisms for frequency control in neuronal competition models, SIAM J. Appl. dyn. Syst. 7, No. 2, 609-649 (2008) · Zbl 1167.34351 · doi:10.1137/070705842
[31]Shpiro, A.; Curtu, R.; Rinzel, J.; Rubin, N.: Dynamical characteristics common to neuronal competition models, J. neurophysiol. 97, 462-473 (2007)
[32]Calabrese, R. L.: Half-center oscillators underlying rhythmic movements, The handbook of brain theory and neural networks, 444-447 (1995)
[33]Skinner, F. K.; Kopell, N.; Marder, E.: Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks, J. comput. Neurosci. 1, 69-87 (1994) · Zbl 0838.92002 · doi:10.1007/BF00962719
[34]Taylor, A. L.; Cottrell, G. W.; Kristan, W. B.: Analysis of oscillations in a reciprocally inhibitory network with synaptic depression, Neural comput. 14, 561-581 (2002) · Zbl 0989.92010 · doi:10.1162/089976602317250906
[35]Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students, Software environ. Tools 14 (2002) · Zbl 1003.68738 · doi:10.1137/1.9780898718195
[36]Ermentrout, B.:
[37]Dhooge, A.; Govaerts, W.; Kuznetsov, Yu.A.: MATCONT: A Matlab package for numerical bifurcation analysis of odes, ACM trans. Math. software 29, 141-164 (2003) · Zbl 1070.65574 · doi:10.1145/779359.779362
[38]Braaksma, B.: Singular Hopf bifurcation in systems with fast and slow variables, J. nonlinear sci. 8, 457-490 (1998) · Zbl 0907.34026 · doi:10.1007/s003329900058