zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrating products of Bessel functions with an additional exponential or rational factor. (English) Zbl 1196.65059
From the abstract: We provide two Matlab programs to compute two integrals including a Bessel function of the first kind and (real) order. The program can deliver accurate error estimates.
MSC:
65D32Quadrature and cubature formulas (numerical methods)
33-04Machine computation, programs (special functions)
33C10Bessel and Airy functions, cylinder functions, 0 F 1
Software:
BESSELINT; Matlab
References:
[1]Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, Applied mathematics series. 55 (1964) · Zbl 0171.38503
[2]Brezinski, C.: Convergence acceleration during the 20th century, J. comput. Appl. math. 122, No. 1, 1-21 (2000) · Zbl 0976.65003 · doi:10.1016/S0377-0427(00)00360-5
[3]Conway, J. T.: Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries, Mon. not. R. astron. Soc. 316, 540-554 (2000)
[4]Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E.: On the Lambert W-function, Advances in computational mathematics 5, 329-359 (1996)
[5]Davis, A. M. J.: Drag modifications for a sphere in a rotational motion at small non-zero Reynolds and Taylor numbers: wake interference and possible Coriolis effects, J. fluid mech. 237, 13-22 (1992) · Zbl 0753.76186 · doi:10.1017/S002211209200332X
[6]Fikioris, G.; Cottis, P. G.; Panagopoulos, A. D.: On an integral related to biaxially anisotropic media, J. comput. Appl. math. 146, 343-360 (2002) · Zbl 1015.33003 · doi:10.1016/S0377-0427(02)00368-0
[7]Groote, S.; Körner, J. G.; Pivovarov, A. A.: On the evaluation of sunset-type Feynman diagrams, Nucl. phys. B 542, 515-547 (1999) · Zbl 0942.81045 · doi:10.1016/S0550-3213(98)00812-8
[8]E. Kostlan, D. Gokhman, A program for calculating the incomplete Gamma function, technical report, Dept. of Mathematics, Univ. of California, Berkeley, 1987
[9]Lucas, S. K.: Evaluating infinite integrals involving products of Bessel functions of arbitrary order, J. comput. Appl. math. 64, 269-282 (1995) · Zbl 0853.65028 · doi:10.1016/0377-0427(95)00143-3
[10]Mehrem, R.; Londergan, J. T.; Macfarlane, M. H.: Analytic expressions for integrals of products of spherical Bessel functions, J. phys. A: math. Gen. 24, 1435-1453 (1991) · Zbl 0736.33004 · doi:10.1088/0305-4470/24/7/018
[11]Mobilia, M.: Competition between homogeneous and local processes in a diffusive many-body system, Journal of statistical mechanics: theory and experiment 4, P04003 (2005)
[12]Roesset, J. M.: Nondestructive dynamic testing of soils and pavements, Tamkang journal of science and engineering 1, No. 2, 61-81 (1998)
[13]Singh, N. P.; Mogi, T.: EMLCLLER — a program for computing the EM response of a large loop source over a layered Earth model, Comput. geosci. 29, No. 10, 1301-1307 (2003)
[14]Singh, N. P.; Mogi, T.: Electromagnetic response of a large circular loop source on a layered Earth: a new computation method, Pure appl. Geophys. 162, 181-200 (2005)
[15]Stone, H. A.; Mcconnell, H. M.: Hydrodynamics of quantized shape transitions of lipid domains, Royal society of London Proceedings series A 448, 97-111 (1995) · Zbl 0821.76003 · doi:10.1098/rspa.1995.0007
[16]Tanzosh, J.; Stone, H. A.: Motion of a rigid particle in a rotating viscous flow: an integral equation approach, J. fluid mech. 275, 225-256 (1994) · Zbl 0815.76088 · doi:10.1017/S002211209400234X
[17]Tezer, M.: On the numerical evaluation of an oscillating infinite series, J. comput. Appl. math. 28, 383-390 (1989) · Zbl 0684.65003 · doi:10.1016/0377-0427(89)90349-X
[18]Van Deun, J.; Cools, R.: Algorithm 858: computing infinite range integrals of an arbitrary product of Bessel functions, ACM trans. Math. software 32, No. 4, 580-596 (2006) · Zbl 1230.65027 · doi:10.1145/1186785.1186790
[19]Van Deun, J.; Cools, R.: A Matlab implementation of an algorithm for computing integrals of products of Bessel functions, Lecture notes comput. Sci. 4151, 284-295 (2006) · Zbl 1230.33015 · doi:10.1007/11832225_29
[20]Van Deun, J.; Cools, R.: A stable recurrence for the incomplete gamma function with imaginary second argument, Numer. math. 104, 445-456 (2006) · Zbl 1102.65028 · doi:10.1007/s00211-006-0026-1
[21]Van Deun, J.; Cools, R.: Note on ”electromagnetic response of a large circular loop source on a layered Earth: a new computation method”, Pure appl. Geophys. 164, No. 5, 1107-1111 (2007)
[22]Watson, G. N.: A treatise on the theory of Bessel functions, (1966) · Zbl 0174.36202
[23]Whelan, C. T.: On the evaluation of integrals over three spherical Bessel functions, J. phys. B: atomic molecular physics 26, 823-825 (1993)