zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment. (English) Zbl 1196.92041
Summary: A chemostat model with delayed response in growth and pulse input in polluted environment is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution. Further, this is globally attractive. The permanence condition of the investigated system is also obtained by the theory of impulsive delay differential equations. Our results reveal that the delayed response in growth plays an important role on the outcome of the chemostat.
34K45Functional-differential equations with impulses
37N25Dynamical systems in biology
[1]Smith H., Waltman P.: Theory of Chemostat. Combridge University, Combridge (1995)
[2]Smith H., Waltman P.: Perturbation of a globally stable steady state. Proc. A.M.S. 127(2), 447–453 (1999) · Zbl 0924.58087 · doi:10.1090/S0002-9939-99-04768-1
[3]Yang K.: Delay Differential Equation with Application in Population Dynamics. Academic Press, Boston (1993)
[4]H.I. Freedman, J.W.H. So, P. Waltman, in Chemostat Competetition with Delays, ed. by J. Eisenfeld, D.S. Levine. Biomedicial Modelling and Simulation (Scientific Publishing Co., 1989), pp. 171–173
[5]Ellermeyer S.F.: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth. SIAM J. Appl. Math. 154, 456–465 (1994) · Zbl 0794.92023 · doi:10.1137/S003613999222522X
[6]Caltagirone L.E., Doutt R.L.: Global behavior of an SEIRS epidemic model with delays, the history of the vedalia beetle importation to California and its impact on the development of biological control. Ann. Rev. Entomol. 34, 1–16 (1989) · doi:10.1146/annurev.en.34.010189.000245
[7]Hsu S.B., Waltman P., Ellermeyer S.F.: A remark on the global asymptotic stability of a dynamical system modeling two species competition. Hiroshima Math. J. 24, 435–445 (1994)
[8]Ellermeyer S., Hendrix J., Ghoochan N.: A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria. J. Theor. Biol. 222, 485–494 (2003)
[9]Bush A.W., Cook A.E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theor. Biol. 63, 385–395 (1975) · doi:10.1016/0022-5193(76)90041-2
[10]Hass C.N.: Application of predator-prey models to disinfection. J. Water Pollut. Contr. Fed. 53, 378–386 (1981)
[11]Hsu S.B., Waltman P.: Competition in the chemostat when one competitor produces a toxin. Jpn. J. Ind. Appl. Math. 15, 471–490 (1998) · Zbl 0982.92035 · doi:10.1007/BF03167323
[12]Jenson A.L., Marshall J.S.: Application of surplus production model to access environmental impacts in exploited populations of Daphnia pluex in the laboratory. Environ. Pollut. (Ser. A) 28, 273–280 (1982) · doi:10.1016/0143-1471(82)90143-X
[13]De Luna J.T., Hallam T.G.: Effects of toxicants on population: a qualitiative approach. IV. Resource-consumer-toxicants model, Ecol. Model. 35, 249–273 (1987)
[14]Dubey B.: Modelling the effect of toxicant on forestry resources. Indian J. Pure Appl. Math. 28, 1–12 (1997)
[15]Freedman H.I., Shukla J.B.: Models for the effect of toxicant in a single-species and predator-prey systems. J. Math. Biol. 30, 15–30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[16]Hallam T.G., Clark C.E., Jordan G.S.: Effects of toxicant on population: a qualitative approach. II. First order kinetics. J. Math. Biol. 18, 25–37 (1983)
[17]Zhang B.: Population’s Ecological Mathematics Modeling. Publishing of Qingdao Marine University, Qingdao (1990)
[18]Hallam T.G., Clark C.E., Lassider R.R.: Effects of toxicant on population: a qualitative approach. I. Equilibrium environmental exposure. Ecol. Model. 18, 291–340 (1983)
[19]Liu B., Chen L.S., Zhang Y.J.: The effects of impulsive toxicant input on a population in a polluted environment. J. Biol. Syst. 11, 265–287 (2003) · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[20]Bulert G.L., Hsu S.B., Waltman P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985) · Zbl 0584.92027 · doi:10.1137/0145025
[21]Hale J.K., Somolinas A.M.: Competition for fluctuating nutrent. J. Math. Biol. 18, 255–280 (1983) · Zbl 0525.92024 · doi:10.1007/BF00276091
[22]Hsu S.B., Hubbell S.P., Waltman P.: A mathematical theory for single nutrent competition in continuous cultures of microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977) · Zbl 0354.92033 · doi:10.1137/0132030
[23]Wolkowicz G.S.K., Zhao X.Q.: N-species competition in a periodic chemostat. Diff. Integr. Eq. 11, 465–491 (1998)
[24]Wang L., Wolkowicz G.S.K.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006) · Zbl 1092.92048 · doi:10.1016/j.jmaa.2005.08.014
[25]D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66 (Longman, NY, 1993)
[26]Jiao J., Chen L.: Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators. Int. J. Biomath. 1, 197–208 (2008) · Zbl 1155.92355 · doi:10.1142/S1793524508000163
[27]Funasaki E., Kot M.: Invasion and chaos in a Lotka-Volterra system. Theor. Popul. Biol. 44, 203–224 (1993) · Zbl 0782.92020 · doi:10.1006/tpbi.1993.1026
[28]Smith R.J., Wolkowicz G.S.K.: Analysis of a model of the nutrent driven self-cycling fermentation process. Dyn. Contin. Disctete Impul. Syst. Ser. B 11, 239–265 (2004)
[29]Jiao J., Chen L., Cai S.: An SEIRS epidemic model with two delays and pulse vaccination. J. Syst. Sci. Complex. 28(4), 385–394 (2008)