zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. (English) Zbl 1196.94057
Summary: Zhou et al. have proposed a chaotic encryption scheme, which is based on a kind of computerized piecewise linear chaotic map (PWLCM) realized in finite computing precision. In this paper, we point out that Zhou’s encryption scheme is not secure enough from strict cryptographic viewpoint. The reason lies in the dynamical degradation of the computerized piecewise linear chaotic map employed by Zhou et al. The dynamical degradation of the computerized chaos induces many weak keys to cause large information leaking of the plaintext. In addition, we also discuss three simple countermeasures to enhance the security of Zhou’s cryptosystem, but none of them can essentially enhance the security.
MSC:
94A60Cryptography