zbMATH — the first resource for mathematics

Examples
 Geometry Search for the term Geometry in any field. Queries are case-independent. Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact. "Topological group" Phrases (multi-words) should be set in "straight quotation marks". au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted. Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff. "Quasi* map*" py: 1989 The resulting documents have publication year 1989. so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14. "Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic. dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles. py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses). la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
 a & b logic and a | b logic or !ab logic not abc* right wildcard "ab c" phrase (ab c) parentheses
Fields
 any anywhere an internal document identifier au author, editor ai internal author identifier ti title la language so source ab review, abstract py publication year rv reviewer cc MSC code ut uncontrolled term dt document type (j: journal article; b: book; a: book article)
Lucky labelings of graphs. (English) Zbl 1197.05125

Summary: Suppose the vertices of a graph $G$ were labeled arbitrarily by positive integers, and let $S\left(v\right)$ denote the sum of labels over all neighbors of vertex $v$. A labeling is lucky if the function $S$ is a proper coloring of $G$, that is, if we have $S\left(u\right)\ne S\left(v\right)$ whenever $u$ and $v$ are adjacent. The least integer $k$ for which a graph $G$ has a lucky labeling from the set $\left\{1,2,\cdots ,k\right\}$ is the lucky number of $G$, denoted by $\eta \left(G\right)$.

Using algebraic methods we prove that $\eta \left(G\right)⩽k+1$ for every bipartite graph $G$ whose edges can be oriented so that the maximum out-degree of a vertex is at most $k$. In particular, we get that $\eta \left(T\right)⩽2$ for every tree $T$, and $\eta \left(G\right)⩽3$ for every bipartite planar graph $G$. By another technique we get a bound for the lucky number in terms of the acyclic chromatic number. This gives in particular that $\eta \left(G\right)⩽100280245065$ for every planar graph $G$. Nevertheless we offer a provocative conjecture that $\eta \left(G\right)⩽\chi \left(G\right)$ for every graph $G$.

MSC:
 05C78 Graph labelling
References:
 [1] Addario-Berry, L.; Aldred, R. E. L.; Dalal, K.; Reed, B. A.: Vertex colouring edge partitions, J. combin. Theory ser. B 94, 237-244 (2005) · Zbl 1074.05031 · doi:10.1016/j.jctb.2005.01.001 [2] Addario-Berry, L.; Dalal, K.; Reed, B. A.: Degree constrained subgraphs, Discrete appl. Math. 156, No. 7, 1168-1174 (2008) · Zbl 1147.05055 · doi:10.1016/j.dam.2007.05.059 [3] Alon, N.: Combinatorial nullstellensatz, Combin. prob. Comput. 8, 7-29 (1999) · Zbl 0920.05026 · doi:10.1017/S0963548398003411 [4] Alon, N.; Friedland, S.; Kalai, G.: Regular subgraphs of almost regular graphs, J. combin. Theory ser. B 37, 79-91 (1984) · Zbl 0527.05059 · doi:10.1016/0095-8956(84)90047-9 [5] Alon, N.; Tarsi, M.: Colorings and orientations of graphs, Combinatorica 12, 125-134 (1992) · Zbl 0756.05049 · doi:10.1007/BF01204715 [6] Bartnicki, T.; Grytczuk, J.; Niwczyk, S.: Weight choosability of graphs, J. graph theory 60, 242-256 (2009) · Zbl 1210.05138 · doi:10.1002/jgt.20354 [7] Borodin, O. V.: On acyclic colorings of planar graphs, Discrete math. 25, 211-236 (1979) · Zbl 0406.05031 · doi:10.1016/0012-365X(79)90077-3 [8] Gallian, J. A.: A dynamic survey of graph labeling, Electron. J. Combin. DS 6 (2008) [9] Hell, P.; Huang, J.: Interval bigraphs and circular arc graphs, J. graph theory 46, 313-327 (2004) · Zbl 1046.05066 · doi:10.1002/jgt.20006 [10] Karoński, M.; łuczak, T.; Thomason, A.: Edge weights and vertex colours, J. combin. Theory ser. B 91, 151-157 (2004) · Zbl 1042.05045 · doi:10.1016/j.jctb.2003.12.001 [11] Przybyło, J.; Woźniak, M.: [12] Przybyło, J.; Woźniak, M.: [13] Sowronek-Kaziów, J.: 1, 2 conjecture – the multiplicative version, Inform. process. Lett. 107, 93-95 (2008)