zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. (English) Zbl 1197.34003
Summary: We investigate the existence of nontrivial solutions for a multi-point boundary value problem for fractional differential equations. Under certain growth conditions on the nonlinearity, several sufficient conditions for the existence of nontrivial solution are obtained by using Leray-Schauder nonlinear alternative. As an application, some examples to illustrate our results are given.
34A08Fractional differential equations
34B10Nonlocal and multipoint boundary value problems for ODE
45J05Integro-ordinary differential equations
[1]Das, S.: Functional fractional calculus for system identification and controls, (2008)
[2]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[3]Podlubny, J.: Fractional differential equations, (1999)
[4]Ahmad, B.; Nieto, J. J.: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstract and applied analysis 2009, 1-9 (2009)
[5]Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers and mathematics with applications 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[6]Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R.: Existence of periodic solution for a nonlinear fractional differential equation, Boundary value problems 2009, 1-18 (2009) · Zbl 1181.34006 · doi:10.1155/2009/324561
[7]Chang, Y.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Mathematical and computer modelling 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[8]Lakshmikantham, V.; Leela, S.: Nagumo-type uniqueness result for fractional differential equations, Nonlinear analysis 71, 2886-2889 (2009) · Zbl 1177.34003 · doi:10.1016/j.na.2009.01.169
[9]Odibat, Z.; Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order, Applied mathematics letters 21, 194-199 (2008) · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[10]Rivero, M.; Rodriguez-Germa, L.; Trujillo, J. J.: Linear fractional differential equations with variable coefficients, Applied mathematics letters 21, 892-897 (2008) · Zbl 1152.34305 · doi:10.1016/j.aml.2007.09.010
[11]Guerekata, G. M.: Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear analysis 70, 1873-1876 (2009) · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[12]Li, C. F.; Luo, X. N.; Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Computers and mathematics with applications 59, 1363-1375 (2010) · Zbl 1189.34014 · doi:10.1016/j.camwa.2009.06.029
[13]Il’in, V. A.; Moiseev, E. I.: Nonlocal boundary value problem of the second kind for a Sturm Liouville operator, Differential equations 23, No. 8, 979-987 (1987) · Zbl 0668.34024
[14]Il’in, V. A.; Moiseev, E. I.: Nonlocal boundary value problem of the first kind for a Sturm Liouville operator in its differential and finite difference aspects, Differential equations 23, No. 7, 803-810 (1987) · Zbl 0668.34025
[15]Guo, Y.; Ji, Y.; Zhang, J.: Three positive solutions for a nonlinear nth-order m-point boundary value problem, Nonlinear analysis 68, 3485-3492 (2007) · Zbl 1156.34311 · doi:10.1016/j.na.2007.03.041
[16]Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones, (1988)