zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic solution and global stability for a nonautonomous competitive Lotka-Volterra diffusion system. (English) Zbl 1197.34084
Summary: A nonautonomous competitive Lotka-Volterra diffusion system is considered. By using the Brouwer fixed point theorem and constructing a suitable Liapunov function, under some appropriate conditions, the system has a unique periodic solution which is globally stable.
MSC:
34C60Qualitative investigation and simulation of models (ODE)
34C25Periodic solutions of ODE
34D23Global stability of ODE
92D25Population dynamics (general)
References:
[1]Fengying, Wei; Ke, Wang: Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka – Volterra diffusion system, Appl. math. Comput. 182, 161-165 (2006) · Zbl 1113.92062 · doi:10.1016/j.amc.2006.03.044
[2]Fengying, Wei; Ke, Wang: Almost periodic solution and stability for nonautonomous cooperative Lotka – Volterra diffusion system, Songliao J. (Natural science edition) 3, 1-4 (2002)
[3]Xinzhu, Meng; Lansun, Chen: Periodic solution and almost periodic solution for a nonautonomous Lotka – Volterra dispersal system with infinite delay, J. math. Anal. appl. 339, 125-145 (2008) · Zbl 1141.34043 · doi:10.1016/j.jmaa.2007.05.084
[4]Yongkun, Li: Positive periodic solutions of periodic neutral Lotka – Volterra system with state dependent delays, J. math. Anal. appl. 330, 1347-1362 (2007) · Zbl 1118.34059 · doi:10.1016/j.jmaa.2006.08.063
[5]Yuming, Chen; Zhan, Zhou: Stable periodic solution of a discrete periodic Lotka – Volterra competition system, J. math. Anal. appl. 277, 358-366 (2003) · Zbl 1019.39004 · doi:10.1016/S0022-247X(02)00611-X
[6]Zhengqiu, Zhang; Zhicheng, Wang: Periodic solution for a two-species nonautonomous competition Lotka – Volterra patch system with time delay, J. math. Anal. appl. 265, 38-48 (2002) · Zbl 1003.34060 · doi:10.1006/jmaa.2001.7682