zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wave of chaos in a diffusive system: generating realistic patterns of patchiness in plankton-fish dynamics. (English) Zbl 1197.37121

Summary: We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton-zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor.

Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
37N25Dynamical systems in biology
92D25Population dynamics (general)
35K57Reaction-diffusion equations