zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. (English) Zbl 1197.42021
Summary: We study nonhomogeneous wavelet systems which have close relations to the fast wavelet transform and homogeneous wavelet systems. We introduce and characterize a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space; the proposed notion enables us to completely separate the perfect reconstruction property of a wavelet system from its stability property in function spaces. The results in this paper lead to a natural explanation for the oblique extension principle, which has been widely used to construct dual wavelet frames from refinable functions, without any a priori condition on the generating wavelet functions and refinable functions. A nonhomogeneous wavelet system, which is not necessarily derived from refinable functions via a multiresolution analysis, not only has a natural multiresolution-like structure that is closely linked to the fast wavelet transform, but also plays a basic role in understanding many aspects of wavelet theory. To illustrate the flexibility and generality of the approach in this paper, we further extend our results to nonstationary wavelets with real dilation factors and to nonstationary wavelet filter banks having the perfect reconstruction property.
MSC:
42C40Wavelets and other special systems
References:
[1]Borup, L.; Gribonval, R.; Nielsen, M.: Bi-framelet systems with few vanishing moments characterize Besov spaces, Appl. comput. Harmon. anal. 17, 3-28 (2004) · Zbl 1042.42028 · doi:10.1016/j.acha.2004.01.004
[2]Chui, C. K.: An introduction to wavelets, (1992)
[3]Chui, C. K.; He, W.; Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments, Appl. comput. Harmon. anal. 13, 224-262 (2002) · Zbl 1016.42023 · doi:10.1016/S1063-5203(02)00510-9
[4]Chui, C. K.; He, W.; Stöckler, J.: Nonstationary tight wavelet frames. II. unbounded intervals, Appl. comput. Harmon. anal. 18, 25-66 (2005) · Zbl 1067.42022 · doi:10.1016/j.acha.2004.09.004
[5]Chui, C. K.; Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. comput. Harmon. anal. 9, 243-264 (2000) · Zbl 0967.42023 · doi:10.1006/acha.2000.0316
[6]Cohen, A.; Daubechies, I.; Feauveau, J. -C.: Biorthogonal bases of compactly supported wavelets, Comm. pure appl. Math. 45, 485-560 (1992) · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[7]Cohen, A.; Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis, SIAM J. Math. anal. 27, 1745-1769 (1996) · Zbl 0862.41013 · doi:10.1137/S003614109427429X
[8]Daubechies, I.: Orthonormal bases of compactly supported wavelets, Comm. pure appl. Math. 41, 909-996 (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[9]Daubechies, I.: Ten lectures on wavelets, CBMS-NSF regional conf. Ser. in appl. Math. (1992) · Zbl 0776.42018
[10]Daubechies, I.; Grossmann, A.; Meyer, Y.: Painless nonorthogonal expansions, J. math. Phys. 27, 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[11]Daubechies, I.; Han, B.: Pairs of dual wavelet frames from any two refinable functions, Constr. approx. 20, 325-352 (2004) · Zbl 1055.42025 · doi:10.1007/s00365-004-0567-4
[12]Daubechies, I.; Han, B.; Ron, A.; Shen, Z.: Framelets: MRA-based constructions of wavelet frames, Appl. comput. Harmon. anal. 14, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[13]Ehler, M.: On multivariate compactly supported bi-frames, J. Fourier anal. Appl. 13, 511-532 (2007) · Zbl 1141.42021 · doi:10.1007/s00041-006-6021-1
[14]Ehler, M.: Compactly supported multivariate pairs of dual wavelet frames obtained by convolution, Int. J. Wavelets multiresolut. Inf. process. 6, 183-208 (2008) · Zbl 1142.42320 · doi:10.1142/S0219691308002306
[15]M. Ehler, Nonlinear approximation associated with nonseparable wavelet bi-frames, J. Approx. Theory, doi:10.1016/j.jat.2008.09.007, in press
[16]Frazier, M.; Garrigós, G.; Wang, K.; Weiss, G.: A characterization of functions that generate wavelet and related expansion, J. Fourier anal. Appl. 3, 883-906 (1997) · Zbl 0896.42022 · doi:10.1007/BF02656493
[17]B. Han, Wavelets, M.Sc. thesis at Institute of Mathematics, Chinese Academy of Sciences, June 1994
[18]Han, B.: On dual wavelet tight frames, Appl. comput. Harmon. anal. 4, 380-413 (1997) · Zbl 0880.42017 · doi:10.1006/acha.1997.0217
[19]Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. comput. Appl. math. 155, 43-67 (2003) · Zbl 1021.42020 · doi:10.1016/S0377-0427(02)00891-9
[20]Han, B.: Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix anal. Appl. 24, 693-714 (2003) · Zbl 1032.42036 · doi:10.1137/S0895479801390868
[21]Han, B.: Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Adv. comput. Math. 24, 375-403 (2006) · Zbl 1096.65137 · doi:10.1007/s10444-004-7615-2
[22]Han, B.: Refinable functions and cascade algorithms in weighted spaces with hölder continuous masks, SIAM J. Math. anal. 40, 70-102 (2008) · Zbl 1161.42017 · doi:10.1137/060661016
[23]Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform, Appl. comput. Harmon. anal. 26, 14-42 (2009) · Zbl 1154.42007 · doi:10.1016/j.acha.2008.01.002
[24]Han, B.; Mo, Q.: Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks, SIAM J. Matrix anal. Appl. 26, 97-124 (2004) · Zbl 1088.65127 · doi:10.1137/S0895479802418859
[25]Han, B.; Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. comput. Harmon. anal. 18, 67-93 (2005) · Zbl 1057.42026 · doi:10.1016/j.acha.2004.09.001
[26]Han, B.; Shen, Z.: Compactly supported symmetric C wavelets with spectral approximation order, SIAM J. Math. anal. 40, 905-938 (2008) · Zbl 1161.42312 · doi:10.1137/060675009
[27]Han, B.; Shen, Z.: Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. approx. 29, 369-406 (2009) · Zbl 1161.42018 · doi:10.1007/s00365-008-9027-x
[28]Hernández, E.; Weiss, G.: A first course on wavelets, (1996) · Zbl 0885.42018
[29]Mallat, S.: A wavelet tour of signal processing, (2009)
[30]Meyer, Y.: Wavelets and operators, (1992)
[31]Ron, A.; Shen, Z.: Affine systems L2(Rd). II. dual systems, J. Fourier anal. Appl. 3, 617-637 (1997)
[32]Ron, A.; Shen, Z.: Affine systems L2(Rd): the analysis of the analysis operator, J. funct. Anal. 148, 408-447 (1997) · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079