zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some criteria on pth moment stability of impulsive stochastic functional differential equations. (English) Zbl 1197.60056
Summary: By using the Lyapunov-Razumikhin method, some criteria on pth moment stability and pth moment asymptotical stability of impulsive stochastic functional differential equations are obtained. An example is also presented to illustrate the efficiency of our results.
MSC:
60H10Stochastic ordinary differential equations
93E15Stochastic stability
References:
[1]Basina, M.; Rodkina, A.: On delay-dependent stability for a class of nonlinear stochastic systems with multiple state delays, Nonlinear anal. 68, 2147-2157 (2008) · Zbl 1154.34044 · doi:10.1016/j.na.2007.01.046
[2]Huang, L.; Deng, F.: Razumikhin-type theorems on stability of neutral stochastic functional differential equations, IEEE trans. Automat. control 53, 1718-1723 (2008)
[3]Huang, L.; Deng, F.: Razumikhin-type theorems on stability of stochastic retarded systems, Internat. J. Systems sci. 40, 73-80 (2009) · Zbl 1156.93402 · doi:10.1080/00207720802145478
[4]Huang, L.; Mao, X.: On input-to-state of stochastic retarded systems with Markovian switching, IEEE trans. Automat. control 54, 1898-1902 (2009)
[5]Huang, L.; Mao, X.; Deng, F.: Stability of hybrid stochastic retarded system, IEEE trans. Circuits syst. I. regul. Pap. 55, 3413-3420 (2008)
[6]Janković, S.; Randjelović, J.; Jovanović, M.: Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. math. Anal. appl. 355, 811-820 (2009) · Zbl 1166.60040 · doi:10.1016/j.jmaa.2009.02.011
[7]Liu, B.: Stability of solutions for stochastic impulsive systems via comparison approach, IEEE trans. Automat. control 53, 2128-2133 (2008)
[8]Mao, X.: Razumikhin-type theorems on exponential stability of stochastic tinctional differential equations, Stochastic process. Appl. 65, 233-250 (1996) · Zbl 0889.60062 · doi:10.1016/S0304-4149(96)00109-3
[9]Mao, X.; Lam, J.; Xu, S.; Gao, H.: Razumikhin method and exponential stability of hybrid stochastic delay interval systems, J. math. Anal. appl. 314, 45-66 (2006) · Zbl 1127.60072 · doi:10.1016/j.jmaa.2005.03.056
[10]Mao, X.: Stochastic differential equations and applications, (1997)
[11]Randjelović, J.; Janković, S.: On the pth moment exponential stability criteria of neutral stochastic functional differential equations, J. math. Anal. appl. 326, 266-280 (2007) · Zbl 1115.60065 · doi:10.1016/j.jmaa.2006.02.030
[12]Sakthivel, R.; Luo, J.: Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. probab. Lett. 79, 1219-1223 (2009) · Zbl 1166.60316 · doi:10.1016/j.spl.2009.01.011
[13]Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[14]Song, Q.; Wang, Z.: Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays, Physica A 387, 3314-3326 (2008)
[15]Wang, X.; Guo, Q.; Xu, D.: Exponential p-stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays, Math. comput. Simulation 79, 1698-1710 (2009) · Zbl 1165.34043 · doi:10.1016/j.matcom.2008.08.008
[16]Wu, H.; Sun, J.: P-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica 42, 1753-1759 (2006) · Zbl 1114.93092 · doi:10.1016/j.automatica.2006.05.009
[17]Xu, L.; Xu, D.: Mean square exponential stability of impulsive control stochastic systems with time-varying delay, Phys. lett. A 373, 328-333 (2009) · Zbl 1227.34082 · doi:10.1016/j.physleta.2008.11.029
[18]Xu, L.; Xu, D.: P-attracting and p-invariant sets for a class of impulsive stochastic functional differential equations, Comput. math. Appl. 57, 54-61 (2009) · Zbl 1165.60329 · doi:10.1016/j.camwa.2008.09.027
[19]Yang, J.; Zhong, S.; Luo, W.: Mean square stability analysis of impulsive stochastic differential equations with delays, J. comput. Appl. math. 216, 474-483 (2008) · Zbl 1142.93035 · doi:10.1016/j.cam.2007.05.022
[20]Yang, Z.; Xu, D.; Xiang, L.: Exponential p-stability of impulsive stochastic differential equations with delays, Phys. lett. A 359, 129-137 (2006)