zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A second-order pseudo-transient method for steady-state problems. (English) Zbl 1197.65050
Author’s abstract: This article gives a second pseudo-transient method for a special system of nonlinear equations, which arises from chemical reaction rate equations. This method uses a special second-order Rosenbrock method as the discrete difference scheme, which satisfies a linear conservation law. Moreover, it adaptively adjusts the time step in inverse proportion to an arithmetic mean of the current residual and the previous residual at every iteration step. For a singular system of nonlinear equations, under some standard assumptions, local convergence of the new method is addressed. Finally, some promise numerical results are also reported.
65H10Systems of nonlinear equations (numerical methods)
[1]Conn, A. R.; Gould, N.; Toint, Ph.L.: Trust-region methods, (2000)
[2]Fan, J. -Y.; Yuan, Y. -X.: On the quadratic convergence of the Levenberg – Marquardt method without nonsingularity assumption, Computing 74, 23-29 (2005) · Zbl 1076.65047 · doi:10.1007/s00607-004-0083-1
[3]Levenberg, K.: A method for the solution of certain problems in least squares, Quart. appl. Math. 2, 164-168 (1944) · Zbl 0063.03501
[4]Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. math. 11, 431-441 (1963) · Zbl 0112.10505 · doi:10.1137/0111030
[5]Nocedal, J.; Wright, S. J.: Numerical optimization, (1999)
[6]Sun, W. -Y.; Yuan, Y. -X.: Optimization theory and methods: nonlinear programming, (2006)
[7]Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adaptive algorithms, (2004)
[8]Shampine, L. F.; Gladwell, I.; Thompson, S.: Solving odes with Matlab, (2003)
[9]Luo, X. -L.: A trajectory-following method for solving the steady state of chemical reaction rate equations, J. theor. Comput. chem. 8, 1039-1058 (2009)
[10]Shampine, L. F.: Linear conservation laws for odes, Comput. math. Appl. 35, 45-53 (1998) · Zbl 0999.65071 · doi:10.1016/S0898-1221(98)00071-6
[11]Shampine, L. F.: Conservation laws and the numerical solution of odes, II, Comput. math. Appl. 38, 61-72 (1999) · Zbl 0947.65086 · doi:10.1016/S0898-1221(99)00183-2
[12]Logan, S. R.: Fundamentals of chemical kinetics, (1996)
[13]Shampine, L. F.; Thompson, S.; Kierzenka, J. A.; Byrne, G. D.: Non-negative solutions of odes, Appl. math. Comput. 170, 556-569 (2005) · Zbl 1082.65547 · doi:10.1016/j.amc.2004.12.011
[14]Higham, D. J.: Trust region algorithms and timestep selection, SIAM J. Numer. anal. 37, 194-210 (1999) · Zbl 0945.65068 · doi:10.1137/S0036142998335972
[15]Kelley, C. T.; Keyes, D. E.: Convergence analysis of pseudo-transient continuation, SIAM J. Numer. anal. 35, 508-523 (1998) · Zbl 0911.65080 · doi:10.1137/S0036142996304796
[16]Luo, X. -L.; Kelley, C. T.; Liao, L. -Z.; Tam, H. -W.: Combining trust region techniques and rosenbrock methods to compute stationary points, J. optim. Theory appl. 140, 265-286 (2009) · Zbl 1190.90213 · doi:10.1007/s10957-008-9469-0
[17]Luo, X. -L.; Liao, L. -Z.; Tam, H. -W.: Convergence analysis of the Levenberg – Marquardt method, Optim. meth. Soft 22, 659-678 (2007) · Zbl 1186.90110 · doi:10.1080/10556780601079233
[18]Evtushenko, Yu.G.: Numerical optimization techniques, (1985)
[19]Schropp, J.: Using dynamical systems methods to solving minimization problems, Appl. numer. Math. 18, 321-335 (1995) · Zbl 0837.65065 · doi:10.1016/0168-9274(95)00065-3
[20]Zirilli, F.: The use of ordinary differential equations in the solution of nonlinear systems of equations, Nonlinear optimization, 39-47 (1981) · Zbl 0545.65033
[21]Gear, C. W.: Numerical initial value problems in ordinary differential equations, (1971) · Zbl 1145.65316
[22]Hairer, E.; Wanner, G.: Solving ordinary differential equations II, stiff and differential-algebraic problems, (1996)
[23]Yuan, Z. -D.; Fei, J. -G.; Liu, D. -G.: The numerical solutions for initial value problems of stiff ordinary differential equations, (1987)
[24]Mulder, W.; Leer, B. V.: Experiments with implicit upwind methods for the Euler equations, J. comput. Phys. 59, 232-246 (1985) · Zbl 0584.76014 · doi:10.1016/0021-9991(85)90144-5
[25]Coffey, T. S.; Kelley, C. T.; Keyes, D. E.: Pseudotransient continuation and differential-algebraic equations, SIAM J. Sci. comput. 25, 553-569 (2003) · Zbl 1048.65080 · doi:10.1137/S106482750241044X
[26]Kelley, C. T.; Liao, L. -Z.; Qi, L. -Q.; Chu, M. -T.; Reese, J. P.; Winton, C.: Projected pseudotransient continuation, SIAM J. Numer. anal. 46, 3071-3083 (2008) · Zbl 1180.65060 · doi:10.1137/07069866X
[27]Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I, nonstiff problems, (1993)
[28]P. Deuflhard, Adaptive pseudo-transient continuation for nonlinear steady state problems, Technical Report 02-14, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 2002.
[29]F. Mazzia and F. Iavernaro, Test Set for Initial Value Problem Solvers, Dipartimento di Matematica, Università degli studi di Bari, Italy, 2003. lt;http://www.dm.uniba.it/ testsetgt;.
[30]Verwer, J. G.: Gauss-seidel iteration for stiff odes from chemical kinetics, SIAM J. Sci. comput. 15, 1243-1259 (1994) · Zbl 0804.65068 · doi:10.1137/0915076
[31]Verwer, J. G.; Van Loon, M.: An evaluation of explicit pseudo-steady state approximation schemes for stiff ODE systems from chemical kinetics, J. comput. Phys. 113, 347-352 (1994) · Zbl 0810.65068 · doi:10.1006/jcph.1994.1141
[32]Ju, L. -P.; Han, K. -L.; Zhang, Z. -H.: Global dynamics and transition state theories: comparative study of reaction rate constants for gas-phase chemical reactions, J. comput. Chem. 30, 305-316 (2009)
[33]Meintjes, K.; Morgan, A. P.: Chemical equilibrium systems as numerical test problems, ACM trans. Math. soft. 16, 143-151 (1990) · Zbl 0900.65153 · doi:10.1145/78928.78930 · doi:http://www.acm.org/pubs/contents/journals/toms/1990-16/
[34]M.J.D. Powell, A Fortran subroutine for solving systems of nonlinear algebraic equations, in: P. Rabinowitz (Ed.), Numerical Methods for Nonlinear Algebraic Equations, 1970 (Chapter 7).
[35]MATLAB 7.70 (R2008b), The MathWorks Inc., 2008. lt;http://www.mathworks.comgt;.
[36]Shampine, L. F.; Reichelt, M. W.: The Matlab ODE suite, SIAM J. Sci. comput. 18, 1-22 (1997)
[37]Brown, A. A.; Bartholomew-Biggs, M. C.: Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations, J. optim. Theory appl. 62, 211-224 (1989) · Zbl 0651.90067 · doi:10.1007/BF00941054
[38]Rosenbrock, H. H.: Some general implicit processes for the numerical solution of differential equations, Comput. J. 5, 329-331 (1963) · Zbl 0112.07805 · doi:10.1093/comjnl/5.4.329
[39]Bai, Z. -Z.; Zhang, S. -L.: A regularized conjugate gradient method for symmetric positive definitive system of linear equations, J. comput. Math. 20, 437-448 (2002) · Zbl 1002.65040
[40]Kelley, C. T.: Solving nonlinear equations with Newton’s method, (2003)
[41]Robertson, H. H.: The solution of a set of reaction rate equations, Numerical analysis, an introduction, 178-182 (1966)
[42]Enright, W. H.; Hull, T. E.; Lindberg, B.: Comparing numerical methods for stiff systems of odes, Bit 15, 10-48 (1975) · Zbl 0301.65040 · doi:10.1007/BF01932994
[43]J.G. Verwer, W.H. Hundsdorfer, J.G. Blom, Numerical time integration for air pollution models, CWI Report MAS-R9825, 1998.