zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions. (English) Zbl 1197.65086
Summary: A new Runge-Kutta-Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge-Kutta-Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.
MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
References:
[1]Dormand, J. R.; El-Mikkawy, M. E. A.; Prince, P. J.: Families of Runge – Kutta – Nyström formulae, IMA J. Numer. anal. 7, 235-250 (1987) · Zbl 0624.65059 · doi:10.1093/imanum/7.2.235
[2]Brusa, L.; Nigro, L.: A one-step method for direct integration of structural dynamic equations, Int. J. Numer. methods engin. 15, 685-699 (1980) · Zbl 0426.65034 · doi:10.1002/nme.1620150506
[3]Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge – Kutta – Nyström methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. anal. 24, 595-617 (1987) · Zbl 0624.65058 · doi:10.1137/0724041
[4]Chawla, M. M.; Rao, P. S.: A noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, J. comput. Appl. math. 11, 277-281 (1984) · Zbl 0565.65041 · doi:10.1016/0377-0427(84)90002-5
[5]Chawla, M. M.; Rao, P. S.: A noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, II. Explicit method, J. comput. Appl. math. 15, 329-337 (1986) · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[6]Chawla, M. M.; Rao, P. S.: An explicit sixth-order method with phase-lag of order eight for y″=f(t,y), J. comput. Appl. math. 17, 365-368 (1987) · Zbl 0614.65084 · doi:10.1016/0377-0427(87)90113-0
[7]Van De Vyver, H.: A symplectic Runge – Kutta – Nyström method with minimal phase-lag, Physics letters A 367, 16-24 (2007) · Zbl 1209.65075 · doi:10.1016/j.physleta.2007.02.066
[8]Van De Vyver, H.: An embedded phase-fitted modified Runge – Kutta method for the numerical integration of the radial Schrödinger equation, Physics letters A 352, 278-285 (2006) · Zbl 1187.65078 · doi:10.1016/j.physleta.2005.12.020
[9]Simos, T. E.; Dimas, E.; Sideridis, A. B.: A Runge – Kutta – Nyström for the numerical integration of special second-order periodic initial-value problems, J. comput. Appl. math. 51, 317-326 (1994) · Zbl 0872.65066 · doi:10.1016/0377-0427(92)00114-O
[10]Simos, T. E.: A Runge – Kutta – fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution, Comput. math. Appl. 25, 95-101 (1993) · Zbl 0777.65046 · doi:10.1016/0898-1221(93)90303-D
[11]Simos, T. E.: Runge – Kutta – Nyström interpolants for the numerical integration of special second-order periodic initial-value problems, Comput. math. Appl. 26, 7-15 (1993) · Zbl 0792.65054 · doi:10.1016/0898-1221(93)90054-Y
[12]Simos, T. E.; Aguiar, Jesús Vigo: A modified Runge – Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems, Computers and chemistry 25, 275-281 (2001) · Zbl 1064.65069 · doi:10.1016/S0097-8485(00)00101-7
[13]Simos, T. E.: Some modified Runge – Kutta methods for the numerical solution of initial-value problems with oscillating solutions, J. scientific computing 13, 1 (1998) · Zbl 0939.65096 · doi:10.1023/A:1023204727185
[14]E. Fehlberg, Classical eight and lower-order Runge – Kutta – Nyström formulas with stepsize control for special second-order differential equations, NASA Technical Report, R-381, 1972