zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The modified differential transform method for solving MHD boundary-layer equations. (English) Zbl 1197.76156
Summary: A new analytical method (DTM-Padé) was developed for solving magnetohydrodynamic boundary-layer equations. It was shown that differential transform method (DTM) solutions are only valid for small values of independent variable. Therefore the DTM is not applicable for solving MHD boundary-layer equations, because in the boundary-layer problem y. Numerical comparisons between the DTM-Padé and numerical methods (by using a fourth-order Runge-Kutta and shooting method) revealed that the new technique is a powerful method for solving MHD boundary-layer equations.
76W05Magnetohydrodynamics and electrohydrodynamics
[1]Hayat, T.; Fetecau, C.; Sajid, M.: Analytic solution for MHD transient rotating flow of a second grade fluid in a porous space, Nonlinear analysis: real world applications 9, 1619-1627 (2008) · Zbl 1154.76391 · doi:10.1016/j.nonrwa.2007.04.006
[2]Hayat, T.; Javedb, T.; Sajid, M.: Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface, Physics letters A 372, 3264-3273 (2008) · Zbl 1220.76011 · doi:10.1016/j.physleta.2008.01.069
[3]Abdelkhalek, M. M.: Heat and mass transfer in MHD flow by perturbation technique, Computational materials science 43, 384-391 (2008)
[4]Abel, M. S.; Nandeppanavar, M. M.: Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Communications in nonlinear science and numerical simulation 14, 2120-2131 (2009) · Zbl 1221.76211 · doi:10.1016/j.cnsns.2008.06.004
[5]Ishak, A.; Nazar, R.; Pop, I.: MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux, Communications in nonlinear science and numerical simulation 14, 109-118 (2009) · Zbl 1221.76224 · doi:10.1016/j.cnsns.2007.07.011
[6]Prasad, K. V.; Pal, D.; Datti, P. S.: MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet, Communications in nonlinear science and numerical simulation 14, 2178-2189 (2009)
[7]Wang, C. Y.: Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear analysis: real world applications 10, 375-380 (2009) · Zbl 1154.76330 · doi:10.1016/j.nonrwa.2007.09.013
[8]Wang, C. Y.: Exact solutions of the steady-state Navier – Stokes equations, Annual review of fluid mechanics 23, 159-177 (1992) · Zbl 0717.76033
[9]S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992
[10]Rashidi, M. M.; Dinarvand, S.: Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method, Nonlinear analysis real world applications 10, No. 4, 2346-2356 (2009) · Zbl 1163.34307 · doi:10.1016/j.nonrwa.2008.04.018
[11]Sajid, M.; Hayat, T.; Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear dynamics 50, 27-35 (2007) · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[12]He, J. H.: Approximate solution for nonlinear differential equations with convolution product nonlinearities, Computer methods in applied mechanics and engineering 167, 69-73 (1998) · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[13]Rashidi, M. M.; Ganji, D. D.; Dinarvand, S.: Explicit analytical solutions of the generalized burger and burger – Fisher equations by homotopy perturbation method, Numerical methods for partial differential equations 25, No. 2, 409-417 (2008) · Zbl 1159.65085 · doi:10.1002/num.20350
[14]Allan, F. M.: Derivation of the Adomian decomposition method using the homotopy analysis method, Applied mathematics and computation 190, 6-14 (2007) · Zbl 1125.65063 · doi:10.1016/j.amc.2006.12.074
[15]He, J. H.: A new approach to non-linear partial differential equations, Communications in nonlinear science and numerical simulation 2, No. 4 (1997) · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90029-0
[16]Rashidi, M. M.; Shahmohamadi, H.: Analytical solution of three-dimensional Navier – Stokes equations for the flow near an infinite rotating disk, Communications in nonlinear science and numerical simulation 14, No. 7, 2999-3006 (2009) · Zbl 1221.76207 · doi:10.1016/j.cnsns.2008.10.030
[17]Zhou, J. K.: Differential transformation and its applications for electrical circuits, (1986)
[18]Chen, C. K.; Ho, S. H.: Solving partial differential equations by two dimensional differential transform method, Applied mathematics and computation 106, 171-179 (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[19]Ayaz, F.: Solutions of the systems of differential equations by differential transform method, Applied mathematics and computation 147, 547-567 (2004) · Zbl 1032.35011 · doi:10.1016/S0096-3003(02)00794-4
[20]Boyd, J.: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain, Computers in physics 11, 299-303 (1997)
[21]Hayat, T.; Hussain, Q.; Javed, T.: The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet, Nonlinear analysis: real world applications 10, 966-973 (2009) · Zbl 1167.76385 · doi:10.1016/j.nonrwa.2007.11.020
[22]Chaim, T. C.: Hydromagnetic flow over a surface stretching with a power-law velocity, International journal of engineering science 33, 429-435 (1995) · Zbl 0899.76375 · doi:10.1016/0020-7225(94)00066-S
[23]Hassan, I. H. Abdel-Halim: Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos solitons and fractals 36, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[24]Rashidi, M. M.; Erfani, E.: New analytical method for solving Burgers and nonlinear heat transfer equations and comparison with HAM, Computer physics communications 180, 1539-1544 (2009)
[25]Ismail, Hna.; Rabboh, Aa. Abde: A restrictive Padé approximation for the solution of the generalized Fisher and burger – Fisher equations, Applied mathematics and computation 154, 203-210 (2004) · Zbl 1050.65077 · doi:10.1016/S0096-3003(03)00703-3
[26]Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model, Applied mathematics and computation 100, 13-25 (1999) · Zbl 0953.92026 · doi:10.1016/S0096-3003(98)00018-6
[27]Baker, G. A.; Graves-Morris, P.: Padé approximants, Encyclopedia of mathematics and its application 13 (1981) · Zbl 0468.30032
[28]Baker, G. A.: Essential of Padé approximants, (1975) · Zbl 0315.41014
[29]Pavlov, K. B.: Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface, Magnitnaya gidrodinamika 4, 146-147 (1975)