zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fractional Schrödinger equation and its solution. (English) Zbl 1197.81126
Summary: This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.
81Q05Closed and approximate solutions to quantum-mechanical equations
26A33Fractional derivatives and integrals (real functions)
35R11Fractional partial differential equations
70H03Lagrange’s equations
49S05Variational principles of physics
[1]Schrödinger, E.: Quantisierung als Eigenwert Problem (Erste Mitteilung). Ann. Phys. 79, 734 (1926) · doi:10.1002/andp.19263840804
[2]Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)
[3]Nelson, E.: Derivation of Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966) · doi:10.1103/PhysRev.150.1079
[4]Hall, M.J.W., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A 35, 3289 (2002) · Zbl 1045.81003 · doi:10.1088/0305-4470/35/14/310
[5]Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
[6]Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Applications. Wiley, New York (1993)
[7]Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
[8]Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
[9]Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)
[10]Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
[11]Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Reading (2006)
[12]Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153 (2001)
[13]Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890 (1996) · doi:10.1103/PhysRevE.53.1890
[14]Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslov. J. Phys. 51, 1348 (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617
[15]Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[16]Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599 (2005) · Zbl 1149.70320 · doi:10.1016/j.jmaa.2004.09.043
[17]Baleanu, D., Muslih, S.I.: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72(2–3), 119 (2005) · Zbl 1122.70360 · doi:10.1238/Physica.Regular.072a00119
[18]Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891 (2007) · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076
[19]Dong, J.P., Xu, M.Y.: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48, 072105 (2007)
[20]Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339 (2004) · Zbl 1071.81035 · doi:10.1063/1.1769611
[21]Wang, S.W., Xu, M.Y.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48, 043502 (2007)
[22]Laskin, N.: Lévy flights over quantum paths. Commun. Nonlinear. Sci. Numer. Simul. 12, 2 (2007) · Zbl 1101.81079 · doi:10.1016/j.cnsns.2006.01.001
[23]Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000) · doi:10.1103/PhysRevE.62.3135
[24]Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Dirac equation and its solution. J. Phys. A, Math. Gen. 45(3), 055203 (2010)
[25]Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)