zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anisotropic Bianchi type V perfect fluid cosmological models in Lyra’s geometry. (English) Zbl 1197.83128
Summary: The law of variation for the mean Hubble parameter with average scale factor in an anisotropic Bianchi type V cosmological space-time is discussed within the frame work of Lyra’s manifold. The variation of Hubble’s parameter, which gives a constant value of deceleration parameter, generates two types of solutions for the average scale factor; one is the power-law and the other one is of exponential form. Using these two forms, new classes of exact solutions of the field equations are found for a Bianchi type V space-time filled with perfect fluid in Lyra’s geometry by considering a time-dependent displacement field. The physical and kinematical behaviors of the singular and non-singular models of the universe are examined. Exact expressions for look-back time, luminosity distance and event horizon versus redshift are also derived and their significance are discussed in detail. It has been observed that the solutions are compatible with the results of recent observations.
MSC:
83F05Relativistic cosmology
83C15Closed form solutions of equations in general relativity
83C55Macroscopic interaction of the gravitational field with matter (general relativity)
83D05Relativistic gravitational theories other than Einstein’s
References:
[1]Folland, G.: Weyl manifolds, J. differential geom. 4, 145-153 (1970) · Zbl 0195.23904
[2]Lyra, G.: Über eine, modifikation der riemannschen geomtrie, Math. Z. 54, 52-54 (1951) · Zbl 0042.15902 · doi:10.1007/BF01175135
[3]Sen, D. K.: A static cosmological model, Z. Fûrr. Phys. 149, 311-323 (1957)
[4]Sen, D. K.; Dunn, K. A.: A scalar-tensor theory of gravitation in a modified Riemannian manifold, J. math. Phys. 12, 578-586 (1971) · Zbl 0211.24804 · doi:10.1063/1.1665623
[5]Halford, W. D.: Cosmological theory based on lyra’s geometry, Aust. J. Phys. 23, 863-869 (1970)
[6]Soleng, H. H.: Cosmologies based on lyra’s geometry, Gen. relativity gravitation 19, 1213-1216 (1987)
[7]Hoyle, F.: A new model for the expanding universe, Mon. not. R. astron. Soc. 108, 372 (1948) · Zbl 0031.38304
[8]Hoyle, F.; Narlikar, J. V.: On the avoidance of singularities in C-field cosmology, Proc. roy. Soc. lond. Ser 278, 465-478 (1964) · Zbl 0116.44701 · doi:10.1098/rspa.1964.0076
[9]Hoyle, F.; Narlikar, J. V.: Time symmetric electrodynamics and the arrow of the time in cosmology, Proc. roy. Soc. lond. Ser 227, 1-23 (1964) · Zbl 0118.23404 · doi:10.1098/rspa.1964.0002
[10]Beesham, A.: FLRW cosmological models in lyra’s manifold with time dependent displacement field, Aust. J. Phys. 41, 833-842 (1988)
[11]Singh, T.; Singh, G. P.: Bianchi type I cosmological models in lyra geometry, J. math. Phys. 32, 2456-2458 (1991) · Zbl 0736.76084 · doi:10.1063/1.529495
[12]Singh, T.; Singh, G. P.: Bianchi type II cosmological models in lyra geometry, Nuovo cimento. 106, 617-622 (1991)
[13]Singh, T.; Singh, G. P.: Bianchi type III and Kantowski–Sachs cosmological models in lyra geometry, Internat. J. Theoret. phys. 31, 1433-1446 (1992)
[14]Singh, T.; Singh, G. P.: Lyra’s geometry and cosmology: a review, Fortschr. phys. 41, 737-764 (1993)
[15]Singh, G. P.; Desikan, K.: A new class of cosmological models in lyra geometry, Pramana J. Phys. 49, 205-212 (1997)
[16]Ram, Shri; Singh, P.: Anisotropic cosmological models of Bianchi types III and V in lyra’s geometry, Internat. J. Theoret. phys. 31, 2095-2102 (1992)
[17]Singh, C. P.: Early cosmological models in lyra’s geometry, Astrophys. space sci. 275, 377-383 (2003) · Zbl 0977.83128 · doi:10.1023/A:1002708316446
[18]Pradhan, A.; Vishwakarma, A. K.: A new class of LRS Bianchi type I cosmological models in lyra geometry, J. geom. Phys. 49, 332-342 (2004) · Zbl 1069.83500 · doi:10.1016/S0393-0440(03)00105-0
[19]Rahaman, F.; Begum, N.; Bag, G.; Bhui, B. C.: Cosmological models with negative constant deceleration parameter in lyra geometry, Astrophys. space sci. 299, 211-218 (2005)
[20]Kumar, S.; Singh, C. P.: An exact Bianchi type -I cosmological models in lyra’s manifolds, Int. J. Mod. phys. A 23, 813-822 (2008) · Zbl 1151.83314 · doi:10.1142/S0217751X08038597
[21]Berman, M. S.: A special law of variation for hubble’s parameter, IL nuovo cimento 74, 182-186 (1983)
[22]Vishwakarma, R. G.: Is the present expansion of the universe really accelerating, Mon. not. R. astron. Soc. 345, 545-551 (2003)
[23]Berman, M. S.; Gomide, F. M.: Cosmological models with constant deceleration parameter, Gen. relativity gravitation 20, 191-198 (1988)
[24]Maharaj, S. D.; Naidoo, R.: Solutions to the field equations and the deceleration parameter, Astrophys. space sci. 208, 261-276 (1993) · Zbl 0806.53080 · doi:10.1007/BF00657941
[25]Johri, V. B.; Desikan, K.: Cosmological models with constant deceleration parameter in Brans-Dicke theory, Gen. relativity gravitation 26, 1217-1231 (1994)
[26]Pradhan, A.; Yadav, V. K.; Chakraborty, I.: Bulk viscous FRW cosmology in lyra geometry, Internat. J. Modern phys. 10, 339-349 (2001)
[27]Singh, C. P.; Kumar, S.: Bianchi type -II cosmological models with constant deceleration parameter, Internat. J. Modern phys. 15, 419-438 (2006) · Zbl 1101.83338 · doi:10.1142/S0218271806007754
[28]Singh, C. P.; Kumar, S.: Bianchi type -II inflationary models with constant deceleration parameter in general relativity, Pramana J. Phys. 68, 707-720 (2007)
[29]Singh, C. P.; Kumar, S.: Bianchi type -II space–times with constant deceleration parameter in self creation cosmology, Astrophys. space sci. 310, 31-39 (2007)
[30]Reddy, D. R. K.; Rao, M. V. Subba; Koteswara, R. G.: A cosmological model with negative constant deceleration parameter in a scalar-tensor theory, Astrophys. space sci. 306, 171-174 (2006)
[31]Reddy, D. R. K.; Naidoo, R. L.; Rao, V. U. M.: A cosmological models with negative constant deceleration parameter in Brans-Dicke theory, Internat. J. Theoret. phys. 46, 1443-1448 (2007) · Zbl 1122.83008 · doi:10.1007/s10773-006-9283-0
[32]Singh, T.; Chaubey, R.: Bianchi type V universe with a viscous fluid and Λ-term, Pramana J. Phys. 68, 721-734 (2007)
[33]Kumar, S.; Singh, C. P.: Anisotropic Bianchi type -I models with constant deceleration parameter, Astrophys. space sci. 312, 57-62 (2007) · Zbl 1162.83311 · doi:10.1007/s10509-007-9623-4
[34]Saha, B.; Rikhvitsky, V.: Bianchi type I universe with viscous fluid and a Λ term: a qualitative analysis, Physica D 219, 168-176 (2006) · Zbl 1101.85008 · doi:10.1016/j.physd.2006.06.003
[35]Collins, C. B.; Hawking, S. W.: Why is universe isotropic, Astrophys. J. 180, 317-334 (1973)
[36]Ellis, G. F. R.: General relativity and cosmology, (1971)
[37]Hawking, S. W.; Ellis, G. F. R.: The large-scale structure of space–time, (1973) · Zbl 0265.53054