zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of a ratio-dependent eco-epidemiological system with prey harvesting. (English) Zbl 1198.34077

Authors’ abstract: We study a ratio-dependent eco-epidemiological system where the prey population is subjected to harvesting. Mathematical results like positive invariance, boundedness, stability of equilibria, and permanence of the system are established. The dynamics of zero equilibria are thoroughly investigated to find conditions on the system parameters such that trajectories starting from the domain of interest can reach a zero equilibrium following any fixed direction. We also study suitable conditions for non-existence of a periodic solution around the interior equilibrium. Computer simulations are carried out to illustrate different analytical findings.

Reviewer’s remark: A related paper is: Z. Zhang and Z. Hou, Nonlinear Anal., Real World Appl. 11, No. 3, 1560–1571 (2010; Zbl 1198.34081).

34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
34D05Asymptotic stability of ODE
34C05Location of integral curves, singular points, limit cycles (ODE)
[1]Arditi, R.; Ginzburg, L. R.: Coupling in predator–prey dynamics : ratio-dependence, J. theoret. Biol. 139, 311-326 (1989)
[2]Arditi, R.; Ginzburg, L. R.; Akcakaya, H. R.: Variation in plankton densities among lakes: A case for ratio-dependent models, Amer. nat. 138, 1287-1296 (1991)
[3]Hairston, N. G.; Smith, F. E.; Slobodkin, L. B.: Community structure, population control and competition, Amer. nat. 94, 421-425 (1960)
[4]Rosenzweig, M. L.: Paradox of enrichment: destabilization of exploitation systems in ecological time, Science 171, 385-387 (1969)
[5]Abrams, P. A.; Walters, C. J.: Invulnerable prey and the paradox of enrichment, Ecology 77, 1125-1133 (1996)
[6]Luck, R. F.: Evaluation of natural enemies for biological control: A behavior approach, Trends ecol. Evol. 5, 196-199 (1990)
[7]Arditi, R.; Berryman, A. A.: The biological paradox, Trends ecol. Evol. 6, 32 (1991)
[8]Akcakaya, H. R.: Population cycles of mammals: evidence for a ratio-dependent predator–prey hypothesis, Ecol. monogr. 62, 119-142 (1992)
[9]Gutierrez, A. P.: The physiological basis of ratio-dependent predator–prey theory: A metabolic pool model of Nicholson’s blowflies as an example, Ecology 73, 1552-1563 (1992)
[10]Kuang, Y.; Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system, J. math. Biol. 36, 389-406 (1998) · Zbl 0895.92032 · doi:10.1007/s002850050105
[11]Jost, C.; Arino, O.; Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models, Bull. math. Biol. 61, 19-32 (1999)
[12]Xiao, D.; Ruan, S.: Global dynamics of a ratio-dependent predator–prey system, J. math. Biol. 43, 268-290 (2001) · Zbl 1007.34031 · doi:10.1007/s002850100097
[13]Hsu, S. B.; Hwang, T. W.; Kuang, Y.: Global analysis of the michaelis–menten type ratio-dependent predator–prey system, J. math. Biol. (2001)
[14]Berezovskaya, F. S.; Karev, G. P.; Arditi, R.: Parametric analysis of the ratio-dependent predator–prey system, J. math. Biol. 43, 221 (2001) · Zbl 0995.92043 · doi:10.1007/s002850000078
[15]Berezovskaya, F. S.; Novozhilov, A. S.; Karev, G. P.: Population models with singular equilibrium, Math. biosci. 208, 270-299 (2007) · Zbl 1116.92049 · doi:10.1016/j.mbs.2006.10.006
[16]Hsu, S. B.; Hwang, T. W.; Kuang, Y.: A ratio-dependent food chain model and its applications to biological control, Math. biosci. 181, 55-83 (2003) · Zbl 1036.92033 · doi:10.1016/S0025-5564(02)00127-X
[17]Anderson, R. M.; May, R. M.: The invasion, persistence, and spread of infectious diseases within animal and plant communities, Philos. trans. R. soc. Lond. B 314, 533-570 (1986)
[18]Hadeler, K. P.; Freedman, H. I.: Predator–prey population with parasite infection, J. math. Biol. 27, 609-631 (1989) · Zbl 0716.92021 · doi:10.1007/BF00276947
[19]Freedman, H. I.: A model of predator–prey dynamics as modified by the action of parasite, Math. biosci. 99, 143-155 (1990) · Zbl 0698.92024 · doi:10.1016/0025-5564(90)90001-F
[20]Beltrami, E.; Carroll, T. O.: Modelling the role of viral disease in recurrent phytoplankton blooms, J. math. Biol. 32, 857-863 (1994) · Zbl 0825.92122 · doi:10.1007/BF00168802
[21]Venturino, E.: Epidemics in predator–prey models: disease in the prey, Mathematical population dynamics: analysis of heterogeneity 1, 381-393 (1995)
[22]Chattopadhyay, J.; Arino, O.: A predator–prey model with disease in the prey, Nonlinear anal. 36, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[23]Chattopadhyay, J.; Bairagi, N.: Pelicans at risk in salton sea – an eco-epidemiological study, Ecol. model. 136, 103-112 (2001)
[24]Xiao, Y.; Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey, Math. biosci. 171, 59-82 (2001) · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[25]Chattopadhyay, J.; Pal, S.: Viral infection on phytoplankton zooplankton system – A mathematical model, Ecol. mode. 151, 15-28 (2002)
[26]Venturino, E.: Epidemics in predator–prey models: disease in the predators, IMA J. Math. appl. Med. biol. 19, 185-205 (2002) · Zbl 1014.92036
[27]Hethcote, H. W.; Wang, W.; Han, L.; Ma, Z.: A predator–prey model with infected prey, Theoret. popul. Biol. 66, 259-268 (2004)
[28]Bairagi, N.; Roy, P. K.; Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions – A comparative study, J. theoret. Biol. 248, 10-25 (2007)
[29]Arino, O.; Abdllaoui, A. E.; Mikaram, J.; Chattopadhyay, J.: Infection in prey population May act as a biological control in ratio-dependent predator–prey models, Nonlinearity 17, 1101-1116 (2004) · Zbl 1062.34050 · doi:10.1088/0951-7715/17/3/018
[30]Brauer, F.; Soudack, A. C.: Coexistence properties of some predator–prey systems under constant rate harvesting and stocking, J. math. Biol. 12, 101-114 (1981) · Zbl 0482.92015 · doi:10.1007/BF00275206
[31]Chaudhuri, K. S.; Roy, S. Saha: On the combined harvesting of a prey–predator system, J. biol. Syst. 4, No. 3, 373-389 (1996)
[32]Clark, C. W.: Mathematical bioeconomics: the optimal management of renewable resources, (1976)
[33]Mesterton-Gibbons, M.: On the optimal policy for combined harvesting of predator and prey, Nat. resource model 3, 63-90 (1988) · Zbl 0850.92067
[34]Ragozin, D. L.; Brown, G. J.: Harvest policies and nonmarket valuation in a predator–prey system, J. environ. Econ. manag. 12, 155-168 (1985)
[35]Semmler, W.; Sieveking, M.: On the optimal exploitation of interacting resources, J. econom. 59, 23-49 (1994) · Zbl 0798.90018 · doi:10.1007/BF01225931
[36]Srinivasu, P. D. N.: Bioeconomics of a renewable resource in presence of a predator, Nonlinear anal. RWA 2, 497-506 (2001) · Zbl 1011.92050 · doi:10.1016/S1468-1218(01)00006-2
[37]Tu, P. N. V.; Wilman, E. A.: A generalized predator–prey model: uncertainty and management, J. environ. Econ. manag. 23, 123-138 (1992) · Zbl 0825.90242 · doi:10.1016/0095-0696(92)90024-Q
[38]Azar, C.; Holmberg, J.; Lindgren, K.: Stability analysis of harvesting in a predator–prey model, J. theoret. Biol. 174, 13-19 (1995)
[39]Dai, G.; Tang, M.: Coexistence region and global dynamics of a harvested predator–prey system, SIAM J. Appl. math. 58, No. 1, 193-210 (1998) · Zbl 0916.34034 · doi:10.1137/S0036139994275799
[40]Bairagi, N.; Chaudhury, S.; Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system – A theoretical study, Math. biosci., 134-144 (2009) · Zbl 1157.92030 · doi:10.1016/j.mbs.2008.11.002
[41]Xiao, D.; Jennings, L. S.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting, SIAM J. Appl. math. Biol. 659, No. 3, 737-753 (2005) · Zbl 1094.34024 · doi:10.1137/S0036139903428719
[42]Uhlig, G.; Sahling, G.: Long-term studies on noctiluca scintillans in German bight, Neth. J. Sea res. 25, 101-112 (1992)
[43]Hamilton, W. D.; Axelrod, R.; Tanese, R.: Sexual reproduction as an adaptation to resist parasite, Proc. natl. Acad. sci. USA 87, 3566-3573 (1990)
[44]Hudson, P. J.; Dobson, A. P.; Newborn, D.: Do parasites make prey vulnerable to predation? red grouse and parasites, J. anim. Ecol. 61, 681-692 (1992)
[45]Lafferty, K. D.; Morris, A. K.: Altered behaviour of parasitized killfish increases susceptibility to predation by bird final hosts, Ecology 77, 1390-1397 (1996)
[46]Moore, J.: Parasites and the behaviour of animals, (2002)
[47]Murray, D. L.; Carry, J. R.; Keith, L. B.: Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation?, J. anim. Ecol. 66, 250-264 (1997)
[48]Barbălat, I.: Systems d’equations differentielles d’oscillation non lineares, Rev. math. Pure appl. 4, 267 (1959) · Zbl 0090.06601
[49]Hale, J. K.; Chow, S. N.: Methods of bifurcation theory–vol. 251, (1982)
[50]Brezis, H.: Analyse fonctionnelle, theorie et applictions, (1983) · Zbl 0511.46001
[51]Li, Y.; Muldowney, S.: On Bendixson criteria, J. differential equations 106, 27-39 (1993) · Zbl 0786.34033 · doi:10.1006/jdeq.1993.1097